Source code for discrete_optimization.maximum_independent_set.solvers.gurobi

from __future__ import annotations

from typing import Any

from discrete_optimization.maximum_independent_set.solvers.lp import (
    BaseLpMisSolver,
    BaseQuadMisSolver,
)

try:
    import gurobipy
except ImportError:
    gurobi_available = False
else:
    gurobi_available = True
    from gurobipy import GRB, LinExpr, Model, Var, quicksum

from discrete_optimization.generic_tools.lp_tools import GurobiMilpSolver
from discrete_optimization.maximum_independent_set.problem import MisSolution


[docs] class GurobiMisSolver(GurobiMilpSolver, BaseLpMisSolver):
[docs] def init_model(self, **kwargs: Any) -> None: BaseLpMisSolver.init_model(self, **kwargs) self.model.update()
[docs] def convert_to_variable_values(self, solution: MisSolution) -> dict[Var, float]: """Convert a solution to a mapping between model variables and their values. Will be used by set_warm_start(). """ return BaseLpMisSolver.convert_to_variable_values(self, solution)
[docs] class GurobiQuadraticMisSolver(GurobiMilpSolver, BaseQuadMisSolver): """Quadratic solver with gurobi. Work only for graph without weight on nodes. If there are weights, it's going to ignore them. """ vars_node_matrix: gurobipy.MVar
[docs] def init_model(self, **kwargs: Any) -> None: BaseQuadMisSolver.init_model(self, **kwargs) self.model.update()
[docs] def create_vars_node_matrix(self) -> gurobipy.MVar: return self.model.addMVar(self.problem.number_nodes, vtype=GRB.BINARY, name="N")
[docs] def convert_to_variable_values(self, solution: MisSolution) -> dict[Var, float]: """Convert a solution to a mapping between model variables and their values. Will be used by set_warm_start(). """ return BaseQuadMisSolver.convert_to_variable_values(self, solution)