Source code for discrete_optimization.maximum_independent_set.solvers.toulbar

#  Copyright (c) 2024 AIRBUS and its affiliates.
#  This source code is licensed under the MIT license found in the
#  LICENSE file in the root directory of this source tree.
from __future__ import annotations

import logging
import os
import random
from typing import Any, Iterable, Optional

from discrete_optimization.generic_tools.do_problem import Solution
from discrete_optimization.generic_tools.lns_tools import ConstraintHandler
from discrete_optimization.generic_tools.toulbar_tools import (
    ToulbarSolver,
    to_lns_toulbar,
)

try:
    import pytoulbar2
except ImportError:
    toulbar_available = False
else:
    toulbar_available = True
import tqdm

from discrete_optimization.generic_tools.do_solver import WarmstartMixin
from discrete_optimization.generic_tools.result_storage.result_storage import (
    ResultStorage,
)
from discrete_optimization.maximum_independent_set.problem import (
    MisProblem,
    MisSolution,
)
from discrete_optimization.maximum_independent_set.solvers.mis_solver import MisSolver

this_folder = os.path.abspath(os.path.dirname(__file__))
logger = logging.getLogger(__name__)


[docs] class ToulbarMisSolver(ToulbarSolver, MisSolver, WarmstartMixin): hyperparameters = ToulbarSolver.hyperparameters
[docs] def retrieve_solution( self, solution_from_toulbar2: tuple[list, float, int] ) -> Solution: return MisSolution(problem=self.problem, chosen=solution_from_toulbar2[0][:])
[docs] def init_model(self, **kwargs): kwargs = self.complete_with_default_hyperparameters(kwargs) model = pytoulbar2.CFN(kwargs.get("UB", 0), vns=kwargs["vns"]) for i in range(self.problem.number_nodes): model.AddVariable(name=f"x_{i}", values=[0, 1]) model.AddFunction([f"x_{i}"], [0, -int(self.problem.attr_list[i])]) for e in tqdm.tqdm(self.problem.edges): i0 = self.problem.nodes_to_index[e[0]] i1 = self.problem.nodes_to_index[e[1]] # print("e", e) # model.AddLinearConstraint([1, 1], [f"x_{i0}", f"x_{i1}"], "<=", 1) model.AddSumConstraint([f"x_{i0}", f"x_{i1}"], operand="<=", rightcoef=1) # model.AddFunction([f"x_{i0}", f"x_{i1}"], # [1000 if x == y == 1 else 0 # for x in [0, 1] for y in [0, 1]]) # Problem.AddFunction([vars[i0], vars[i1]], # [10 ** 12 if x == y == 1 else 0 # for x in [0, 1] for y in [0, 1]]) self.model = model
[docs] def set_warm_start(self, solution: MisSolution) -> None: for i in range(self.problem.number_nodes): self.model.CFN.wcsp.setBestValue(i, solution.chosen[i])
ToulbarMisSolverForLns = to_lns_toulbar(ToulbarMisSolver)
[docs] class MisConstraintHandlerToulbar(ConstraintHandler):
[docs] def remove_constraints_from_previous_iteration( self, solver: ToulbarMisSolverForLns, previous_constraints: Iterable[Any], **kwargs: Any, ) -> None: pass
def __init__(self, fraction_node: float = 0.3): self.fraction_node = fraction_node
[docs] def adding_constraint_from_results_store( self, solver: ToulbarMisSolverForLns, result_storage: ResultStorage, **kwargs: Any, ) -> Iterable[Any]: best_sol: MisSolution = result_storage.get_best_solution_fit()[0] problem: MisProblem = solver.problem random_indexes = random.sample( range(problem.number_nodes), k=int(self.fraction_node * problem.number_nodes), ) text = ",".join( f"{index}={int(best_sol.chosen[index])}" for index in random_indexes ) text = "," + text # circumvent some timeout issue when calling Parse(text). TODO : investigate. solver.model.CFN.timer(100) try: solver.model.Parse(text) except Exception as e: solver.model.ClearPropagationQueues() logger.warning(f"Error raised during parsing certificate : {e}") solver.set_warm_start(best_sol)