# hub.solver.stable_baselines.stable_baselines

Domain specification

Domain

# StableBaseline

This class wraps a stable OpenAI Baselines solver (stable_baselines3) as a scikit-decide solver.

WARNING

Using this class requires Stable Baselines 3 to be installed.

# Constructor StableBaseline

StableBaseline(
  domain_factory: Callable[[], Domain],
algo_class: type[BaseAlgorithm],
baselines_policy: Union[str, type[BasePolicy]],
learn_config: Optional[dict[str, Any]] = None,
callback: Callable[[StableBaseline], bool] = <lambda function>,
use_action_masking: bool = False,
**kwargs: Any
) -> None

Initialize StableBaselines.

# Parameters

  • domain_factory: A callable with no argument returning the domain to solve (can be a mere domain class). The resulting domain will be auto-cast to the level expected by the solver.
  • algo_class: The class of Baselines solver (stable_baselines3) to wrap.
  • baselines_policy: The class of Baselines policy network (stable_baselines3.common.policies or str) to use.
  • learn_config: the kwargs passed to sb3 algo's learn() method
  • callback: function called at each solver iteration. If returning true, the solve process stops.
  • use_action_masking: if True,
    • the domain will be wrapped in a gymnasium environment exposing action_masks(),
    • self.sample_action() will pass action masks to underlying sb3 algo's predict() (e.g. MaskablePPO or MaskableGraphPPO),
    • self.using_applicable_actions() will return True so that rollout knows to retrieve action masks before sampling actions. kwargs: keyword arguments passed to the algo_class constructor.

# autocast Solver

autocast(
  self,
domain_cls: Optional[type[Domain]] = None
) -> None

Autocast itself to the level corresponding to the given domain class.

# Parameters

  • domain_cls: the domain class to which level the solver needs to autocast itself. By default, use the original domain factory passed to its constructor.

# check_domain Solver

check_domain(
  domain: Domain
) -> bool

Check whether a domain is compliant with this solver type.

By default, Solver.check_domain() provides some boilerplate code and internally calls Solver._check_domain_additional() (which returns True by default but can be overridden to define specific checks in addition to the "domain requirements"). The boilerplate code automatically checks whether all domain requirements are met.

# Parameters

  • domain: The domain to check.

# Returns

True if the domain is compliant with the solver type (False otherwise).

# complete_with_default_hyperparameters Hyperparametrizable

complete_with_default_hyperparameters(
  kwargs: dict[str, Any],
names: Optional[list[str]] = None
)

Add missing hyperparameters to kwargs by using default values

Args: kwargs: keyword arguments to complete (e.g. for __init__, init_model, or solve) names: names of the hyperparameters to add if missing. By default, all available hyperparameters.

Returns: a new dictionary, completion of kwargs

# copy_and_update_hyperparameters Hyperparametrizable

copy_and_update_hyperparameters(
  names: Optional[list[str]] = None,
**kwargs_by_name: dict[str, Any]
) -> list[Hyperparameter]

Copy hyperparameters definition of this class and update them with specified kwargs.

This is useful to define hyperparameters for a child class for which only choices of the hyperparameter change for instance.

Args: names: names of hyperparameters to copy. Default to all. **kwargs_by_name: for each hyperparameter specified by its name, the attributes to update. If a given hyperparameter name is not specified, the hyperparameter is copied without further update.

Returns:

# get_action_mask Maskable

get_action_mask(
  self
) -> Optional[StrDict[Mask]]

Retrieve stored action masks.

To be used by self.sample_action(). Returns None if self.set_action_mask() was not called.

# get_default_hyperparameters Hyperparametrizable

get_default_hyperparameters(
  names: Optional[list[str]] = None
) -> dict[str, Any]

Get hyperparameters default values.

Args: names: names of the hyperparameters to choose. By default, all available hyperparameters will be suggested.

Returns: a mapping between hyperparameter's name_in_kwargs and its default value (None if not specified)

# get_domain_requirements Solver

get_domain_requirements(
) -> list[type]

Get domain requirements for this solver class to be applicable.

Domain requirements are classes from the skdecide.builders.domain package that the domain needs to inherit from.

# Returns

A list of classes to inherit from.

# get_hyperparameter Hyperparametrizable

get_hyperparameter(
  name: str
) -> Hyperparameter

Get hyperparameter from given name.

# get_hyperparameters_by_name Hyperparametrizable

get_hyperparameters_by_name(
) -> dict[str, Hyperparameter]

Mapping from name to corresponding hyperparameter.

# get_hyperparameters_names Hyperparametrizable

get_hyperparameters_names(
) -> list[str]

List of hyperparameters names.

# get_policy StableBaseline

get_policy(
  self
) -> BasePolicy

Return the computed policy.

# is_policy_defined_for Policies

is_policy_defined_for(
  self,
observation: StrDict[D.T_observation]
) -> bool

Check whether the solver's current policy is defined for the given observation.

# Parameters

  • observation: The observation to consider.

# Returns

True if the policy is defined for the given observation memory (False otherwise).

# load Restorable

load(
  self,
path: str
) -> None

Restore the solver state from given path.

After calling self._load(), autocast itself so that rollout methods apply to the domain original characteristics.

# Parameters

  • path: The path where the solver state was saved.

# reset Solver

reset(
  self
) -> None

Reset whatever is needed on this solver before running a new episode.

This function does nothing by default but can be overridden if needed (e.g. to reset the hidden state of a LSTM policy network, which carries information about past observations seen in the previous episode).

# retrieve_applicable_actions ApplicableActions

retrieve_applicable_actions(
  self,
domain: Domain
) -> None

Retrieve applicable actions and use it for future call to self.step().

To be called during rollout to get the actual applicable actions from the actual domain used in rollout. Transform applicable actions into an action_mask to be use when sampling action.

# sample_action Policies

sample_action(
  self,
observation: StrDict[D.T_observation]
) -> StrDict[list[D.T_event]]

Sample an action for the given observation (from the solver's current policy).

# Parameters

  • observation: The observation for which an action must be sampled.

# Returns

The sampled action.

# save Restorable

save(
  self,
path: str
) -> None

Save the solver state to given path.

# Parameters

  • path: The path to store the saved state.

# set_action_mask Maskable

set_action_mask(
  self,
action_mask: Optional[StrDict[Mask]]
) -> None

Set the action mask.

To be called during rollout before self.sample_action(), assuming that self.sample_action() knows what to do with it.

Autocastable so that it can use action_mask from original domain during rollout.

# solve FromInitialState

solve(
  self
) -> None

Run the solving process.

After solving by calling self._solve(), autocast itself so that rollout methods apply to the domain original characteristics.

TIP

The nature of the solutions produced here depends on other solver's characteristics like policy and assessibility.

# suggest_hyperparameter_with_optuna Hyperparametrizable

suggest_hyperparameter_with_optuna(
  trial: optuna.trial.Trial,
name: str,
prefix: str,
**kwargs
) -> Any

Suggest hyperparameter value during an Optuna trial.

This can be used during Optuna hyperparameters tuning.

Args: trial: optuna trial during hyperparameters tuning name: name of the hyperparameter to choose prefix: prefix to add to optuna corresponding parameter name (useful for disambiguating hyperparameters from subsolvers in case of meta-solvers) **kwargs: options for optuna hyperparameter suggestions

Returns:

kwargs can be used to pass relevant arguments to

  • trial.suggest_float()
  • trial.suggest_int()
  • trial.suggest_categorical()

For instance it can

  • add a low/high value if not existing for the hyperparameter or override it to narrow the search. (for float or int hyperparameters)
  • add a step or log argument (for float or int hyperparameters, see optuna.trial.Trial.suggest_float())
  • override choices for categorical or enum parameters to narrow the search

# suggest_hyperparameters_with_optuna Hyperparametrizable

suggest_hyperparameters_with_optuna(
  trial: optuna.trial.Trial,
names: Optional[list[str]] = None,
kwargs_by_name: Optional[dict[str, dict[str, Any]]] = None,
fixed_hyperparameters: Optional[dict[str, Any]] = None,
prefix: str
) -> dict[str, Any]

Suggest hyperparameters values during an Optuna trial.

Args: trial: optuna trial during hyperparameters tuning names: names of the hyperparameters to choose. By default, all available hyperparameters will be suggested. If fixed_hyperparameters is provided, the corresponding names are removed from names. kwargs_by_name: options for optuna hyperparameter suggestions, by hyperparameter name fixed_hyperparameters: values of fixed hyperparameters, useful for suggesting subbrick hyperparameters, if the subbrick class is not suggested by this method, but already fixed. Will be added to the suggested hyperparameters. prefix: prefix to add to optuna corresponding parameters (useful for disambiguating hyperparameters from subsolvers in case of meta-solvers)

Returns: mapping between the hyperparameter name and its suggested value. If the hyperparameter has an attribute name_in_kwargs, this is used as the key in the mapping instead of the actual hyperparameter name. the mapping is updated with fixed_hyperparameters.

kwargs_by_name[some_name] will be passed as **kwargs to suggest_hyperparameter_with_optuna(name=some_name)

# using_applicable_actions ApplicableActions

using_applicable_actions(
  self
)

Tell if the solver is able to use applicable actions information.

# _check_domain_additional Solver

_check_domain_additional(
  domain: Domain
) -> bool

Check whether the given domain is compliant with the specific requirements of this solver type (i.e. the ones in addition to "domain requirements").

This is a helper function called by default from Solver.check_domain(). It focuses on specific checks, as opposed to taking also into account the domain requirements for the latter.

# Parameters

  • domain: The domain to check.

# Returns

True if the domain is compliant with the specific requirements of this solver type (False otherwise).

# _cleanup Solver

_cleanup(
  self
)

Runs cleanup code here, or code to be executed at the exit of a 'with' context statement.

# _initialize Solver

_initialize(
  self
)

Runs long-lasting initialization code here.

# _is_policy_defined_for Policies

_is_policy_defined_for(
  self,
observation: StrDict[D.T_observation]
) -> bool

Check whether the solver's current policy is defined for the given observation.

# Parameters

  • observation: The observation to consider.

# Returns

True if the policy is defined for the given observation memory (False otherwise).

# _load Restorable

_load(
  self,
path: str
)

Restore the solver state from given path.

# Parameters

  • path: The path where the solver state was saved.

# _reset Solver

_reset(
  self
) -> None

Reset whatever is needed on this solver before running a new episode.

This function does nothing by default but can be overridden if needed (e.g. to reset the hidden state of a LSTM policy network, which carries information about past observations seen in the previous episode).

# _sample_action Policies

_sample_action(
  self,
observation: StrDict[D.T_observation]
) -> StrDict[list[D.T_event]]

Sample an action for the given observation (from the solver's current policy).

# Parameters

  • observation: The observation for which an action must be sampled.

# Returns

The sampled action.

# _save Restorable

_save(
  self,
path: str
) -> None

Save the solver state to given path.

# Parameters

  • path: The path to store the saved state.

# _set_action_mask Maskable

_set_action_mask(
  self,
action_mask: Optional[StrDict[Mask]]
) -> None

Set the action mask.

To be called during rollout before self.sample_action(), assuming that self.sample_action() knows what to do with it.

# _solve FromInitialState

_solve(
  self
) -> None

Run the solving process.

TIP

The nature of the solutions produced here depends on other solver's characteristics like policy and assessibility.

# as_gymnasium_env

as_gymnasium_env(
  domain: Domain
) -> gym.Env

Wraps the domain into a gymnasium env.

To be fed to sb3 algorithms.

# as_masked_gymnasium_env

as_masked_gymnasium_env(
  domain: Domain
) -> gym.Env

Wraps the domain into an action-masked gymnasium env.

This means that it exposes a method self.action_masks() as expected by algorithms like sb3_contrib.MaskablePPO.