discrete_optimization.tsp package
Subpackages
- discrete_optimization.tsp.solvers package
- Submodules
- discrete_optimization.tsp.solvers.cp_mzn module
- discrete_optimization.tsp.solvers.cpsat module
- discrete_optimization.tsp.solvers.dp module
- discrete_optimization.tsp.solvers.gpdp module
- discrete_optimization.tsp.solvers.lns_cpsat module
- discrete_optimization.tsp.solvers.lp_iterative module
- discrete_optimization.tsp.solvers.optal module
- discrete_optimization.tsp.solvers.ortools_routing module
- discrete_optimization.tsp.solvers.quantum module
- discrete_optimization.tsp.solvers.toulbar module
- discrete_optimization.tsp.solvers.tsp_solver module
- Module contents
Submodules
discrete_optimization.tsp.mutation module
- class discrete_optimization.tsp.mutation.Mutation2Opt(tsp_model: Point2DTspProblem, test_all: bool = False, nb_test: int | None = None, return_only_improvement: bool = False, **kwargs: Any)[source]
Bases:
Mutation- static build(problem: Point2DTspProblem, solution: TspSolution, **kwargs) Mutation2Opt[source]
- get_points(it: int, jt: int, variable: TspSolution) tuple[Point2D, Point2D, Point2D, Point2D][source]
- get_points_index(it: int, jt: int, variable: TspSolution) tuple[int, int, int, int][source]
- mutate(variable: TspSolution) tuple[TspSolution, LocalMove][source]
- mutate_and_compute_obj(variable: TspSolution) tuple[TspSolution, LocalMove, dict[str, float]][source]
- node_count: int
- class discrete_optimization.tsp.mutation.Mutation2OptIntersection(tsp_model: Point2DTspProblem, test_all: bool = True, nb_test: int | None = None, return_only_improvement: bool = False, i_j_pairs: list[tuple[int, int]] | None = None, **kwargs: Any)[source]
Bases:
Mutation2Opt- static build(problem: Point2DTspProblem, solution: TspSolution, **kwargs) Mutation2OptIntersection[source]
- mutate_and_compute_obj(variable: TspSolution) tuple[TspSolution, LocalMove, dict[str, float]][source]
- nodeCount: int
- class discrete_optimization.tsp.mutation.MutationSwapTsp(tsp_model: TspProblem)[source]
Bases:
Mutation- static build(problem: TspProblem, solution: TspSolution, **kwargs) MutationSwapTsp[source]
- mutate(solution: TspSolution) tuple[TspSolution, LocalMove][source]
- mutate_and_compute_obj(solution: TspSolution) tuple[TspSolution, LocalMove, dict[str, float]][source]
- class discrete_optimization.tsp.mutation.SwapTspMove(attribute: str, tsp_model: TspProblem, swap: tuple[int, int])[source]
Bases:
LocalMove- apply_local_move(solution: TspSolution) TspSolution[source]
- backtrack_local_move(solution: TspSolution) TspSolution[source]
- discrete_optimization.tsp.mutation.find_intersection(variable: TspSolution, points: Sequence[Point2D], test_all: bool = False, nb_tests: int = 10) list[tuple[int, int]][source]
- discrete_optimization.tsp.mutation.get_points_index(it: int, jt: int, variable: TspSolution, length_permutation: int) tuple[int, int, int, int][source]
discrete_optimization.tsp.parser module
- discrete_optimization.tsp.parser.get_data_available(data_folder: str | None = None, data_home: str | None = None) list[str][source]
Get datasets available for tsp.
- Params:
- data_folder: folder where datasets for tsp whould be find.
If None, we look in “tsp” subdirectory of data_home.
- data_home: root directory for all datasets. Is None, set by
default to “~/discrete_optimization_data “
- discrete_optimization.tsp.parser.parse_file(file_path: str, start_index: int = 0, end_index: int = 0) Point2DTspProblem[source]
- discrete_optimization.tsp.parser.parse_input_data(input_data: str, start_index: int = 0, end_index: int = 0) Point2DTspProblem[source]
discrete_optimization.tsp.plot module
- discrete_optimization.tsp.plot.plot_tsp_solution(tsp_model: Point2DTspProblem, solution: TspSolution, ax: Any | None = None) None[source]
discrete_optimization.tsp.problem module
- class discrete_optimization.tsp.problem.DistanceMatrixTspProblem(list_points: Sequence[Point], distance_matrix: ndarray, node_count: int, start_index: int = 0, end_index: int = 0, use_numba: bool = True)[source]
Bases:
TspProblem- evaluate_function(var_tsp: TspSolution) tuple[list[int], int][source]
- class discrete_optimization.tsp.problem.Point2D(x: float, y: float)[source]
Bases:
Point- x: float
- y: float
- class discrete_optimization.tsp.problem.Point2DTspProblem(list_points: Sequence[Point2D], node_count: int, start_index: int = 0, end_index: int = 0, use_numba: bool = True)[source]
Bases:
TspProblem- evaluate_function(var_tsp: TspSolution) tuple[Iterable[float], float][source]
- class discrete_optimization.tsp.problem.TspProblem(list_points: Sequence[Point], node_count: int, start_index: int = 0, end_index: int = 0)[source]
Bases:
Problem- evaluate(var_tsp: TspSolution) dict[str, float][source]
Evaluate a given solution object for the given problem.
This method should return a dictionnary of KPI, that can be then used for mono or multiobjective optimization.
- Parameters:
variable (Solution) – the Solution object to evaluate.
Returns: dictionnary of float kpi for the solution.
- abstract evaluate_function(var_tsp: TspSolution) tuple[Iterable[float], float][source]
- get_attribute_register() EncodingRegister[source]
Returns how the Solution should be encoded.
Returns (EncodingRegister): content of the encoding of the solution
- get_dummy_solution() TspSolution[source]
- get_objective_register() ObjectiveRegister[source]
Returns the objective definition.
Returns (ObjectiveRegister): object defining the objective criteria.
- get_random_dummy_solution() TspSolution[source]
- get_solution_type() type[Solution][source]
Returns the class implementation of a Solution.
Returns (class): class object of the given Problem.
- node_count: int
- np_points: ndarray
- satisfy(var_tsp: TspSolution) bool[source]
Computes if a solution satisfies or not the constraints of the problem.
- Parameters:
variable – the Solution object to check satisfability
Returns (bool): boolean true if the constraints are fulfilled, false elsewhere.
- class discrete_optimization.tsp.problem.TspSolution(problem: TspProblem, start_index: int | None = None, end_index: int | None = None, permutation: list[int] | None = None, lengths: list[float] | None = None, length: float | None = None, permutation_from0: list[int] | None = None)[source]
Bases:
Solution- change_problem(new_problem: Problem) None[source]
If relevant to the optimisation problem, change the underlying problem instance for the solution.
This method can be used to evaluate a solution for different instance of problems.
- Parameters:
new_problem (Problem) – another problem instance from which the solution can be evaluated
Returns: None
- copy() TspSolution[source]
Deep copy of the solution.
The copy() function should return a new object containing the same input as the current object, that respects the following expected behaviour: -y = x.copy() -if do some inplace change of y, the changes are not done in x.
Returns: a new object from which you can manipulate attributes without changing the original object.
- end_index: int
- lazy_copy() TspSolution[source]
This function should return a new object but possibly with mutable attributes from the original objects.
A typical use of lazy copy is in evolutionary algorithms or genetic algorithm where the use of local move don’t need to do a possibly costly deepcopy.
Returns (Solution): copy (possibly shallow) of the Solution
- length: float | None
- lengths: list[float] | None
- permutation: list[int]
- permutation_from0: list[int]
- start_index: int
- discrete_optimization.tsp.problem.build_evaluate_function(tsp_model: TspProblem) Callable[[list[int]], tuple[list[float], float]][source]
- discrete_optimization.tsp.problem.build_evaluate_function_matrix(tsp_model: DistanceMatrixTspProblem) Callable[[list[int]], tuple[list[int], int]][source]
- discrete_optimization.tsp.problem.build_evaluate_function_np(tsp_model: TspProblem) Callable[[list[int]], tuple[ndarray[Any, dtype[float64]], float]][source]
- discrete_optimization.tsp.problem.compute_length(solution: list[int], start_index: int, end_index: int, list_points: Sequence[Point2D], node_count: int, length_permutation: int) tuple[list[float], float][source]
- discrete_optimization.tsp.problem.compute_length_matrix(solution: list[int] | ndarray, start_index: int, end_index: int, distance_matrix: ndarray, node_count: int, length_permutation: int) tuple[list[int], int][source]
discrete_optimization.tsp.solvers_map module
- discrete_optimization.tsp.solvers_map.look_for_solver(domain: TspProblem) list[type[TspSolver]][source]
- discrete_optimization.tsp.solvers_map.look_for_solver_class(class_domain: type[TspProblem]) list[type[TspSolver]][source]
- discrete_optimization.tsp.solvers_map.return_solver(method: type[TspSolver], problem: TspProblem, **kwargs: Any) TspSolver[source]
- discrete_optimization.tsp.solvers_map.solve(method: type[TspSolver], problem: TspProblem, **kwargs: Any) ResultStorage[source]
discrete_optimization.tsp.utils module
- discrete_optimization.tsp.utils.baseline_in_order(nodeCount: int, points: Sequence[Point2D]) tuple[Iterable[int], float, int][source]
- discrete_optimization.tsp.utils.build_matrice_distance(nodeCount: int, method: Callable[[int, int], float]) ndarray[Any, dtype[float64]][source]
- discrete_optimization.tsp.utils.build_matrice_distance_np(nodeCount: int, points: Sequence[Point2D]) tuple[ndarray, ndarray][source]
- discrete_optimization.tsp.utils.closest_greedy(nodeCount: int, points: Sequence[Point2D]) tuple[list[int], float, int][source]