discrete_optimization.jsp package
Subpackages
Submodules
discrete_optimization.jsp.parser module
- discrete_optimization.jsp.parser.get_data_available(data_folder: str | None = None, data_home: str | None = None) list[str][source]
Get datasets available for jobshop.
- Params:
- data_folder: folder where datasets for jobshop whould be find.
If None, we look in “jobshop” subdirectory of data_home.
- data_home: root directory for all datasets. Is None, set by
default to “~/discrete_optimization_data “
discrete_optimization.jsp.problem module
- class discrete_optimization.jsp.problem.JobShopProblem(list_jobs: list[list[Subjob]], n_jobs: int | None = None, n_machines: int | None = None, horizon: int | None = None)[source]
Bases:
SchedulingProblem[tuple[int,int]],PrecedenceProblem[tuple[int,int]]- evaluate(variable: JobShopSolution) dict[str, float][source]
Evaluate a given solution object for the given problem.
This method should return a dictionnary of KPI, that can be then used for mono or multiobjective optimization.
- Parameters:
variable (Solution) – the Solution object to evaluate.
Returns: dictionnary of float kpi for the solution.
- get_attribute_register() EncodingRegister[source]
Returns how the Solution should be encoded.
Returns (EncodingRegister): content of the encoding of the solution
- get_last_tasks() list[tuple[int, int]][source]
Get a sublist of tasks that are candidate to be the last one scheduled.
Default to all tasks.
- get_objective_register() ObjectiveRegister[source]
Returns the objective definition.
Returns (ObjectiveRegister): object defining the objective criteria.
- get_precedence_constraints() dict[tuple[int, int], list[tuple[int, int]]][source]
Map each task to the tasks that need to be performed after it.
- get_solution_type() type[Solution][source]
Returns the class implementation of a Solution.
Returns (class): class object of the given Problem.
- n_jobs: int
- n_machines: int
- satisfy(variable: JobShopSolution) bool[source]
Computes if a solution satisfies or not the constraints of the problem.
- Parameters:
variable – the Solution object to check satisfability
Returns (bool): boolean true if the constraints are fulfilled, false elsewhere.
- property tasks_list: list[tuple[int, int]]
- class discrete_optimization.jsp.problem.JobShopSolution(problem: JobShopProblem, schedule: list[list[tuple[int, int]]])[source]
Bases:
SchedulingSolution[tuple[int,int]]- change_problem(new_problem: JobShopProblem) None[source]
If relevant to the optimisation problem, change the underlying problem instance for the solution.
This method can be used to evaluate a solution for different instance of problems.
- Parameters:
new_problem (Problem) – another problem instance from which the solution can be evaluated
Returns: None
- copy() JobShopSolution[source]
Deep copy of the solution.
The copy() function should return a new object containing the same input as the current object, that respects the following expected behaviour: -y = x.copy() -if do some inplace change of y, the changes are not done in x.
Returns: a new object from which you can manipulate attributes without changing the original object.
- problem: JobShopProblem
- class discrete_optimization.jsp.problem.Subjob(machine_id: int, processing_time: int)[source]
Bases:
object- machine_id: int
- processing_time: int
- discrete_optimization.jsp.problem.Task
Task representation: (job index, subjob index).
discrete_optimization.jsp.utils module
- discrete_optimization.jsp.utils.plot_jobshop_solution(solution: JobShopSolution, title: str = 'Job Shop Schedule')[source]
Creates a Gantt chart visualization for a JobShopSolution.
- Parameters:
solution – A JobShopSolution object containing the problem and schedule.
title – The title for the plot.
- discrete_optimization.jsp.utils.transform_jsp_to_rcpsp(jsp_problem: JobShopProblem) RcpspProblem[source]