discrete_optimization.vrp package
Subpackages
- discrete_optimization.vrp.solvers package
- Submodules
- discrete_optimization.vrp.solvers.cpsat module
- discrete_optimization.vrp.solvers.dp module
- discrete_optimization.vrp.solvers.greedy module
- discrete_optimization.vrp.solvers.lns_cpsat module
- discrete_optimization.vrp.solvers.lp_iterative module
LPIterativeVrpSolverLPIterativeVrpSolver.constraint_on_edgeLPIterativeVrpSolver.edgesLPIterativeVrpSolver.edges_in_customersLPIterativeVrpSolver.edges_in_merged_graphLPIterativeVrpSolver.edges_out_customersLPIterativeVrpSolver.edges_out_merged_graphLPIterativeVrpSolver.edges_warm_setLPIterativeVrpSolver.init_model()LPIterativeVrpSolver.modelLPIterativeVrpSolver.problemLPIterativeVrpSolver.solve()LPIterativeVrpSolver.x_var
build_graph_pruned_vrp()build_matrice_distance_np()build_the_cycles()build_warm_edges_and_update_graph()compute_start_end_flows_info()init_model_lp()plot_solve()rebuild_tsp_routine()reevaluate_solutions()retrieve_solutions()update_graph()update_model_2()
- discrete_optimization.vrp.solvers.ortools_routing module
- discrete_optimization.vrp.solvers.vrp_solver module
- Module contents
Submodules
discrete_optimization.vrp.mutation module
- class discrete_optimization.vrp.mutation.RelocateMove(index_vehicle_from: int, index_vehicle_to: int, index_from: int, index_to: int)[source]
Bases:
LocalMove- apply_local_move(solution: VrpSolution) VrpSolution[source]
- backtrack_local_move(solution: VrpSolution) VrpSolution[source]
- class discrete_optimization.vrp.mutation.RelocateVrpMutation(problem: VrpProblem, attribute: str | None = None, **kwargs: Any)[source]
Bases:
SingleAttributeMutation- mutate(solution: VrpSolution) tuple[VrpSolution, LocalMove][source]
- problem: VrpProblem
- class discrete_optimization.vrp.mutation.SwapMove(index_vehicle_from: int, index_vehicle_to: int, index_from: int, index_to: int)[source]
Bases:
LocalMove- apply_local_move(solution: VrpSolution) VrpSolution[source]
- backtrack_local_move(solution: VrpSolution) VrpSolution[source]
- class discrete_optimization.vrp.mutation.SwapVrpMutation(problem: VrpProblem, attribute: str | None = None, **kwargs: Any)[source]
Bases:
SingleAttributeMutation- mutate(solution: VrpSolution) tuple[VrpSolution, LocalMove][source]
- problem: VrpProblem
- class discrete_optimization.vrp.mutation.TwoOptVrpMutation(problem: VrpProblem, attribute: str | None = None, test_all: bool = False, nb_test: int | None = None, return_only_improvement: bool = False, **kwargs: Any)[source]
Bases:
Mutation- get_points(vehicle: int, it: int, jt: int, variable: VrpSolution) tuple[BasicCustomer, BasicCustomer, BasicCustomer, BasicCustomer][source]
- get_points_index(vehicle: int, it: int, jt: int, variable: VrpSolution) tuple[int, int, int, int][source]
- mutate(solution: VrpSolution) tuple[VrpSolution, LocalMove][source]
- mutate_and_compute_obj(solution: VrpSolution) tuple[VrpSolution, LocalMove, dict[str, float]][source]
- node_count: int
- problem: VrpProblem
discrete_optimization.vrp.parser module
- discrete_optimization.vrp.parser.get_data_available(data_folder: str | None = None, data_home: str | None = None) list[str][source]
Get datasets available for vrp.
- Params:
- data_folder: folder where datasets for vrp whould be find.
If None, we look in “vrp” subdirectory of data_home.
- data_home: root directory for all datasets. Is None, set by
default to “~/discrete_optimization_data “
- discrete_optimization.vrp.parser.parse_file(file_path: str, start_index: int = 0, end_index: int = 0, vehicle_count: int | None = None) Customer2DVrpProblem[source]
- discrete_optimization.vrp.parser.parse_input(input_data: str, start_index: int = 0, end_index: int = 0, vehicle_count: int | None = None) Customer2DVrpProblem[source]
discrete_optimization.vrp.plot module
- discrete_optimization.vrp.plot.plot_vrp_solution(vrp_problem: Customer2DVrpProblem, solution: VrpSolution, ax: Any = None) None[source]
discrete_optimization.vrp.problem module
- class discrete_optimization.vrp.problem.BasicCustomer(name: str | int, demand: float)[source]
Bases:
object
- class discrete_optimization.vrp.problem.Customer2D(name: str | int, demand: float, x: float, y: float)[source]
Bases:
BasicCustomer
- class discrete_optimization.vrp.problem.Customer2DVrpProblem(vehicle_count: int, vehicle_capacities: list[float], customer_count: int, customers: Sequence[Customer2D], start_indexes: list[int], end_indexes: list[int])[source]
Bases:
VrpProblem- customers: Sequence[Customer2D]
- evaluate_function(vrp_sol: VrpSolution) tuple[list[list[float]], list[float], float, list[float]][source]
- class discrete_optimization.vrp.problem.VrpPaths[source]
Bases:
AttributeTypeSpecific attribute type for vrp.
- class discrete_optimization.vrp.problem.VrpProblem(vehicle_count: int, vehicle_capacities: list[float], customer_count: int, customers: Sequence[BasicCustomer], start_indexes: list[int], end_indexes: list[int])[source]
Bases:
Problem- customers: Sequence[BasicCustomer]
- evaluate(variable: VrpSolution) dict[str, float][source]
Evaluate a given solution object for the given problem.
This method should return a dictionnary of KPI, that can be then used for mono or multiobjective optimization.
- Parameters:
variable (Solution) – the Solution object to evaluate.
Returns: dictionnary of float kpi for the solution.
- abstractmethod evaluate_function(var_tsp: VrpSolution) tuple[list[list[float]], list[float], float, list[float]][source]
- get_attribute_register() EncodingRegister[source]
Returns how the Solution should be encoded.
Useful to find automatically available mutations for local search. Used by genetic algorithms Ga and Nsga.
This needs only to be implemented in child classes when GA or LS solvers are to be used.
Returns (EncodingRegister): content of the encoding of the solution
- get_dummy_solution() VrpSolution[source]
Create a trivial solution for the problem.
Should satisfy the problem ideally. Does not exist for all kind of problems.
- get_objective_register() ObjectiveRegister[source]
Returns the objective definition.
Returns (ObjectiveRegister): object defining the objective criteria.
- get_solution_type() type[Solution][source]
Returns the class implementation of a Solution.
Returns (class): class object of the given Problem.
- get_stupid_solution() VrpSolution[source]
- satisfy(variable: VrpSolution) bool[source]
Computes if a solution satisfies or not the constraints of the problem.
- Parameters:
variable – the Solution object to check satisfability
Returns (bool): boolean true if the constraints are fulfilled, false elsewhere.
- class discrete_optimization.vrp.problem.VrpSolution(problem: VrpProblem, list_start_index: list[int], list_end_index: list[int], list_paths: list[list[int]], capacities: list[float] | None = None, length: float | None = None, lengths: list[list[float]] | None = None)[source]
Bases:
Solution- change_problem(new_problem: Problem) None[source]
If relevant to the optimisation problem, change the underlying problem instance for the solution.
This method can be used to evaluate a solution for different instance of problems. It should be implemented in child classes when caching subresults depending on the problem.
- Parameters:
new_problem (Problem) – another problem instance from which the solution can be evaluated
Returns: None
- copy() VrpSolution[source]
Deep copy of the solution.
The copy() function should return a new object containing the same input as the current object, that respects the following expected behaviour: -y = x.copy() -if do some inplace change of y, the changes are not done in x.
Returns: a new object from which you can manipulate attributes without changing the original object.
- lazy_copy() VrpSolution[source]
This function should return a new object but possibly with mutable attributes from the original objects.
A typical use of lazy copy is in evolutionary algorithms or genetic algorithm where the use of local move don’t need to do a possibly costly deepcopy.
Returns (Solution): copy (possibly shallow) of the Solution
- problem: VrpProblem
- discrete_optimization.vrp.problem.build_evaluate_function(vrp_problem: VrpProblem) Callable[[VrpSolution], tuple[list[list[float]], list[float], float, list[float]]][source]
- discrete_optimization.vrp.problem.compute_length(start_index: int, end_index: int, solution: list[int], list_customers: Sequence[BasicCustomer], method: Callable[[int, int], float]) tuple[list[float], float, float][source]
- discrete_optimization.vrp.problem.compute_length_np(start_index: int, end_index: int, solution: list[int] | ndarray, np_points: ndarray) tuple[list[float] | ndarray, float][source]
- discrete_optimization.vrp.problem.length(point1: Customer2D, point2: Customer2D) float[source]
- discrete_optimization.vrp.problem.sequential_computing(vrp_sol: VrpSolution, vrp_problem: VrpProblem) tuple[list[list[float]], list[float], float, list[float]][source]
- discrete_optimization.vrp.problem.stupid_solution(vrp_problem: VrpProblem) tuple[VrpSolution, dict[str, float]][source]
- discrete_optimization.vrp.problem.trivial_solution(vrp_problem: VrpProblem) tuple[VrpSolution, dict[str, float]][source]
discrete_optimization.vrp.solvers_map module
- discrete_optimization.vrp.solvers_map.look_for_solver(domain: VrpProblem) list[type[VrpSolver]][source]
- discrete_optimization.vrp.solvers_map.look_for_solver_class(class_domain: type[VrpProblem]) list[type[VrpSolver]][source]
- discrete_optimization.vrp.solvers_map.return_solver(method: type[VrpSolver], problem: VrpProblem, **kwargs: Any) VrpSolver[source]
- discrete_optimization.vrp.solvers_map.solve(method: type[VrpSolver], problem: VrpProblem, **kwargs: Any) ResultStorage[source]
discrete_optimization.vrp.utils module
- discrete_optimization.vrp.utils.build_graph(vrp_problem: VrpProblem) tuple[Graph, ndarray][source]
- discrete_optimization.vrp.utils.compute_length_matrix(vrp_problem: VrpProblem) tuple[ndarray, ndarray][source]
- discrete_optimization.vrp.utils.prune_search_space(vrp_problem: VrpProblem, n_shortest: int = 10) tuple[ndarray, ndarray][source]