# builders.domain.initialization
Domain specification
# Initializable
A domain must inherit this class if it can be initialized.
# reset Initializable
reset(
self
) -> StrDict[D.T_observation]
Reset the state of the environment and return an initial observation.
By default, Initializable.reset()
provides some boilerplate code and internally calls Initializable._reset()
(which returns an initial state). The boilerplate code automatically stores the initial state into the _memory
attribute and samples a corresponding observation.
# Returns
An initial observation.
# _reset Initializable
_reset(
self
) -> StrDict[D.T_observation]
Reset the state of the environment and return an initial observation.
By default, Initializable._reset()
provides some boilerplate code and internally
calls Initializable._state_reset()
(which returns an initial state). The boilerplate code automatically stores
the initial state into the _memory
attribute and samples a corresponding observation.
# Returns
An initial observation.
# _state_reset Initializable
_state_reset(
self
) -> D.T_state
Reset the state of the environment and return an initial state.
This is a helper function called by default from Initializable._reset()
. It focuses on the state level, as
opposed to the observation one for the latter.
# Returns
An initial state.
# UncertainInitialized
A domain must inherit this class if its states are initialized according to a probability distribution known as white-box.
# get_initial_state_distribution UncertainInitialized
get_initial_state_distribution(
self
) -> Distribution[D.T_state]
Get the (cached) probability distribution of initial states.
By default, UncertainInitialized.get_initial_state_distribution()
internally
calls UncertainInitialized._get_initial_state_distribution_()
the first time and automatically caches its value
to make future calls more efficient (since the initial state distribution is assumed to be constant).
# Returns
The probability distribution of initial states.
# reset Initializable
reset(
self
) -> StrDict[D.T_observation]
Reset the state of the environment and return an initial observation.
By default, Initializable.reset()
provides some boilerplate code and internally calls Initializable._reset()
(which returns an initial state). The boilerplate code automatically stores the initial state into the _memory
attribute and samples a corresponding observation.
# Returns
An initial observation.
# _get_initial_state_distribution UncertainInitialized
_get_initial_state_distribution(
self
) -> Distribution[D.T_state]
Get the (cached) probability distribution of initial states.
By default, UncertainInitialized._get_initial_state_distribution()
internally
calls UncertainInitialized._get_initial_state_distribution_()
the first time and automatically caches its value
to make future calls more efficient (since the initial state distribution is assumed to be constant).
# Returns
The probability distribution of initial states.
# _get_initial_state_distribution_ UncertainInitialized
_get_initial_state_distribution_(
self
) -> Distribution[D.T_state]
Get the probability distribution of initial states.
This is a helper function called by default from UncertainInitialized._get_initial_state_distribution()
, the
difference being that the result is not cached here.
TIP
The underscore at the end of this function's name is a convention to remind that its result should be constant.
# Returns
The probability distribution of initial states.
# _reset Initializable
_reset(
self
) -> StrDict[D.T_observation]
Reset the state of the environment and return an initial observation.
By default, Initializable._reset()
provides some boilerplate code and internally
calls Initializable._state_reset()
(which returns an initial state). The boilerplate code automatically stores
the initial state into the _memory
attribute and samples a corresponding observation.
# Returns
An initial observation.
# _state_reset Initializable
_state_reset(
self
) -> D.T_state
Reset the state of the environment and return an initial state.
This is a helper function called by default from Initializable._reset()
. It focuses on the state level, as
opposed to the observation one for the latter.
# Returns
An initial state.
# DeterministicInitialized
A domain must inherit this class if it has a deterministic initial state known as white-box.
# get_initial_state DeterministicInitialized
get_initial_state(
self
) -> D.T_state
Get the (cached) initial state.
By default, DeterministicInitialized.get_initial_state()
internally
calls DeterministicInitialized._get_initial_state_()
the first time and automatically caches its value to make
future calls more efficient (since the initial state is assumed to be constant).
# Returns
The initial state.
# get_initial_state_distribution UncertainInitialized
get_initial_state_distribution(
self
) -> Distribution[D.T_state]
Get the (cached) probability distribution of initial states.
By default, UncertainInitialized.get_initial_state_distribution()
internally
calls UncertainInitialized._get_initial_state_distribution_()
the first time and automatically caches its value
to make future calls more efficient (since the initial state distribution is assumed to be constant).
# Returns
The probability distribution of initial states.
# reset Initializable
reset(
self
) -> StrDict[D.T_observation]
Reset the state of the environment and return an initial observation.
By default, Initializable.reset()
provides some boilerplate code and internally calls Initializable._reset()
(which returns an initial state). The boilerplate code automatically stores the initial state into the _memory
attribute and samples a corresponding observation.
# Returns
An initial observation.
# _get_initial_state DeterministicInitialized
_get_initial_state(
self
) -> D.T_state
Get the (cached) initial state.
By default, DeterministicInitialized._get_initial_state()
internally
calls DeterministicInitialized._get_initial_state_()
the first time and automatically caches its value to make
future calls more efficient (since the initial state is assumed to be constant).
# Returns
The initial state.
# _get_initial_state_ DeterministicInitialized
_get_initial_state_(
self
) -> D.T_state
Get the initial state.
This is a helper function called by default from DeterministicInitialized._get_initial_state()
, the difference
being that the result is not cached here.
# Returns
The initial state.
# _get_initial_state_distribution UncertainInitialized
_get_initial_state_distribution(
self
) -> Distribution[D.T_state]
Get the (cached) probability distribution of initial states.
By default, UncertainInitialized._get_initial_state_distribution()
internally
calls UncertainInitialized._get_initial_state_distribution_()
the first time and automatically caches its value
to make future calls more efficient (since the initial state distribution is assumed to be constant).
# Returns
The probability distribution of initial states.
# _get_initial_state_distribution_ UncertainInitialized
_get_initial_state_distribution_(
self
) -> Distribution[D.T_state]
Get the probability distribution of initial states.
This is a helper function called by default from UncertainInitialized._get_initial_state_distribution()
, the
difference being that the result is not cached here.
TIP
The underscore at the end of this function's name is a convention to remind that its result should be constant.
# Returns
The probability distribution of initial states.
# _reset Initializable
_reset(
self
) -> StrDict[D.T_observation]
Reset the state of the environment and return an initial observation.
By default, Initializable._reset()
provides some boilerplate code and internally
calls Initializable._state_reset()
(which returns an initial state). The boilerplate code automatically stores
the initial state into the _memory
attribute and samples a corresponding observation.
# Returns
An initial observation.
# _state_reset Initializable
_state_reset(
self
) -> D.T_state
Reset the state of the environment and return an initial state.
This is a helper function called by default from Initializable._reset()
. It focuses on the state level, as
opposed to the observation one for the latter.
# Returns
An initial state.