# hub.solver.ray_rllib.custom_models
Domain specification
# TFParametricActionsModel
Parametric action model that handles the dot product and masking and that also learns action embeddings. TensorFlow version.
This assumes the outputs are logits for a single Categorical action dist.
# Constructor TFParametricActionsModel
TFParametricActionsModel(
obs_space,
action_space,
num_outputs,
model_config,
name,
**kw
)
Initializes a TFModelV2 instance.
Here is an example implementation for a subclass
MyModelClass(TFModelV2)
::
def __init__(self, *args, **kwargs):
super(MyModelClass, self).__init__(*args, **kwargs)
input_layer = tf.keras.layers.Input(...)
hidden_layer = tf.keras.layers.Dense(...)(input_layer)
output_layer = tf.keras.layers.Dense(...)(hidden_layer)
value_layer = tf.keras.layers.Dense(...)(hidden_layer)
self.base_model = tf.keras.Model(
input_layer, [output_layer, value_layer])
# context ModelV2
context(
self
) ->
Returns a contextmanager for the current TF graph.
# custom_loss ModelV2
custom_loss(
self,
policy_loss: typing.Union[, ForwardRef('jnp.ndarray'), ForwardRef('tf.Tensor'), ForwardRef('torch.Tensor')] ,
loss_inputs: typing.Dict[str, typing.Union[, ForwardRef('jnp.ndarray'), ForwardRef('tf.Tensor'), ForwardRef('torch.Tensor')]]
) -> typing.Union[typing.List[typing.Union[, ForwardRef('jnp.ndarray'), ForwardRef('tf.Tensor'), ForwardRef('torch.Tensor')]], , ForwardRef('jnp.ndarray'), ForwardRef('tf.Tensor'), ForwardRef('torch.Tensor')]
Override to customize the loss function used to optimize this model.
This can be used to incorporate self-supervised losses (by defining a loss over existing input and output tensors of this model), and supervised losses (by defining losses over a variable-sharing copy of this model's layers).
You can find an runnable example in examples/custom_loss.py.
Args: policy_loss: List of or single policy loss(es) from the policy. loss_inputs: map of input placeholders for rollout data.
Returns: List of or scalar tensor for the customized loss(es) for this model.
# forward ModelV2
forward(
self,
input_dict,
state,
seq_lens
)
Call the model with the given input tensors and state.
Any complex observations (dicts, tuples, etc.) will be unpacked by call before being passed to forward(). To access the flattened observation tensor, refer to input_dict["obs_flat"].
This method can be called any number of times. In eager execution, each call to forward() will eagerly evaluate the model. In symbolic execution, each call to forward creates a computation graph that operates over the variables of this model (i.e., shares weights).
Custom models should override this instead of call.
Args: input_dict: dictionary of input tensors, including "obs", "obs_flat", "prev_action", "prev_reward", "is_training", "eps_id", "agent_id", "infos", and "t". state: list of state tensors with sizes matching those returned by get_initial_state + the batch dimension seq_lens: 1d tensor holding input sequence lengths
Returns: A tuple consisting of the model output tensor of size [BATCH, num_outputs] and the list of new RNN state(s) if any.
.. testcode:: :skipif: True
import numpy as np
from ray.rllib.models.modelv2 import ModelV2
class MyModel(ModelV2):
# ...
def forward(self, input_dict, state, seq_lens):
model_out, self._value_out = self.base_model(
input_dict["obs"])
return model_out, state
# get_initial_state ModelV2
get_initial_state(
self
) -> typing.List[typing.Union[, ForwardRef('jnp.ndarray'), ForwardRef('tf.Tensor'), ForwardRef('torch.Tensor')]]
Get the initial recurrent state values for the model.
Returns: List of np.array (for tf) or Tensor (for torch) objects containing the initial hidden state of an RNN, if applicable.
.. testcode:: :skipif: True
import numpy as np
from ray.rllib.models.modelv2 import ModelV2
class MyModel(ModelV2):
# ...
def get_initial_state(self):
return [
np.zeros(self.cell_size, np.float32),
np.zeros(self.cell_size, np.float32),
]
# is_time_major ModelV2
is_time_major(
self
) ->
If True, data for calling this ModelV2 must be in time-major format.
Returns Whether this ModelV2 requires a time-major (TxBx...) data format.
# last_output ModelV2
last_output(
self
) -> typing.Union[, ForwardRef('jnp.ndarray'), ForwardRef('tf.Tensor'), ForwardRef('torch.Tensor')]
Returns the last output returned from calling the model.
# metrics ModelV2
metrics(
self
) -> typing.Dict[str, typing.Union[, ForwardRef('jnp.ndarray'), ForwardRef('tf.Tensor'), ForwardRef('torch.Tensor')]]
Override to return custom metrics from your model.
The stats will be reported as part of the learner stats, i.e., info.learner.[policy_id, e.g. "default_policy"].model.key1=metric1
Returns: The custom metrics for this model.
# register_variables TFModelV2
register_variables(
self,
variables: typing.List[typing.Union[, ForwardRef('jnp.ndarray'), ForwardRef('tf.Tensor'), ForwardRef('torch.Tensor')]]
)
Register the given list of variables with this model.
# trainable_variables ModelV2
trainable_variables(
self,
as_dict: = False
) -> typing.Union[typing.List[typing.Union[, ForwardRef('jnp.ndarray'), ForwardRef('tf.Tensor'), ForwardRef('torch.Tensor')]], typing.Dict[str, typing.Union[, ForwardRef('jnp.ndarray'), ForwardRef('tf.Tensor'), ForwardRef('torch.Tensor')]]]
Returns the list of trainable variables for this model.
Args: as_dict: Whether variables should be returned as dict-values (using descriptive keys).
Returns:
The list (or dict if as_dict
is True) of all trainable
(tf)/requires_grad (torch) variables of this ModelV2.
# update_ops TFModelV2
update_ops(
self
) -> typing.List[typing.Union[, ForwardRef('jnp.ndarray'), ForwardRef('tf.Tensor'), ForwardRef('torch.Tensor')]]
Return the list of update ops for this model.
For example, this should include any BatchNorm update ops.
# value_function ModelV2
value_function(
self
)
Returns the value function output for the most recent forward pass.
Note that a forward
call has to be performed first, before this
methods can return anything and thus that calling this method does not
cause an extra forward pass through the network.
Returns: Value estimate tensor of shape [BATCH].
# variables ModelV2
variables(
self,
as_dict: = False
) -> typing.Union[typing.List[typing.Union[, ForwardRef('jnp.ndarray'), ForwardRef('tf.Tensor'), ForwardRef('torch.Tensor')]], typing.Dict[str, typing.Union[, ForwardRef('jnp.ndarray'), ForwardRef('tf.Tensor'), ForwardRef('torch.Tensor')]]]
Returns the list (or a dict) of variables for this model.
Args: as_dict: Whether variables should be returned as dict-values (using descriptive str keys).
Returns:
The list (or dict if as_dict
is True) of all variables of this
ModelV2.
# _annotated_type ModelV2
# TorchParametricActionsModel
Parametric action model that handles the dot product and masking and that also learns action embeddings. PyTorch version.
This assumes the outputs are logits for a single Categorical action dist.
# Constructor TorchParametricActionsModel
TorchParametricActionsModel(
obs_space,
action_space,
num_outputs,
model_config,
name,
**kw
)
Initialize a TorchModelV2.
Here is an example implementation for a subclass
MyModelClass(TorchModelV2, nn.Module)
::
def __init__(self, *args, **kwargs):
TorchModelV2.__init__(self, *args, **kwargs)
nn.Module.__init__(self)
self._hidden_layers = nn.Sequential(...)
self._logits = ...
self._value_branch = ...
# add_module Module
add_module(
self,
name: ,
module: typing.Optional[ForwardRef('Module')]
)
Add a child module to the current module.
The module can be accessed as an attribute using the given name.
Args: name (str): name of the child module. The child module can be accessed from this module using the given name module (Module): child module to be added to the module.
# apply Module
apply(
self: ~T,
fn: typing.Callable[[ForwardRef('Module')], NoneType]
) -> ~T
Apply fn
recursively to every submodule (as returned by .children()
) as well as self.
Typical use includes initializing the parameters of a model
(see also :ref:nn-init-doc
).
Args:
fn (:class:Module
-> None): function to be applied to each submodule
Returns: Module: self
Example::
>>> @torch.no_grad()
>>> def init_weights(m):
>>> print(m)
>>> if type(m) == nn.Linear:
>>> m.weight.fill_(1.0)
>>> print(m.weight)
>>> net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))
>>> net.apply(init_weights)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)
# bfloat16 Module
bfloat16(
self: ~T
) -> ~T
Casts all floating point parameters and buffers to bfloat16
datatype.
.. note:: This method modifies the module in-place.
Returns: Module: self
# buffers Module
buffers(
self,
recurse: = True
) -> typing.Iterator[torch.Tensor]
Return an iterator over module buffers.
Args: recurse (bool): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.
Yields: torch.Tensor: module buffer
Example::
>>> # xdoctest: +SKIP("undefined vars")
>>> for buf in model.buffers():
>>> print(type(buf), buf.size())
\<class 'torch.Tensor'> (20L,)
\<class 'torch.Tensor'> (20L, 1L, 5L, 5L)
# children Module
children(
self
) -> typing.Iterator[ForwardRef('Module')]
Return an iterator over immediate children modules.
Yields: Module: a child module
# compile Module
compile(
self,
*args,
**kwargs
)
Compile this Module's forward using :func:torch.compile
.
This Module's __call__
method is compiled and all arguments are passed as-is
to :func:torch.compile
.
See :func:torch.compile
for details on the arguments for this function.
# context ModelV2
context(
self
) ->
Returns a contextmanager for the current forward pass.
# cpu Module
cpu(
self: ~T
) -> ~T
Move all model parameters and buffers to the CPU.
.. note:: This method modifies the module in-place.
Returns: Module: self
# cuda Module
cuda(
self: ~T,
device: typing.Union[int, torch.device, NoneType] = None
) -> ~T
Move all model parameters and buffers to the GPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on GPU while being optimized.
.. note:: This method modifies the module in-place.
Args: device (int, optional): if specified, all parameters will be copied to that device
Returns: Module: self
# custom_loss ModelV2
custom_loss(
self,
policy_loss: typing.Union[, ForwardRef('jnp.ndarray'), ForwardRef('tf.Tensor'), ForwardRef('torch.Tensor')] ,
loss_inputs: typing.Dict[str, typing.Union[, ForwardRef('jnp.ndarray'), ForwardRef('tf.Tensor'), ForwardRef('torch.Tensor')]]
) -> typing.Union[typing.List[typing.Union[, ForwardRef('jnp.ndarray'), ForwardRef('tf.Tensor'), ForwardRef('torch.Tensor')]], , ForwardRef('jnp.ndarray'), ForwardRef('tf.Tensor'), ForwardRef('torch.Tensor')]
Override to customize the loss function used to optimize this model.
This can be used to incorporate self-supervised losses (by defining a loss over existing input and output tensors of this model), and supervised losses (by defining losses over a variable-sharing copy of this model's layers).
You can find an runnable example in examples/custom_loss.py.
Args: policy_loss: List of or single policy loss(es) from the policy. loss_inputs: map of input placeholders for rollout data.
Returns: List of or scalar tensor for the customized loss(es) for this model.
# double Module
double(
self: ~T
) -> ~T
Casts all floating point parameters and buffers to double
datatype.
.. note:: This method modifies the module in-place.
Returns: Module: self
# eval Module
eval(
self: ~T
) -> ~T
Set the module in evaluation mode.
This has any effect only on certain modules. See documentations of
particular modules for details of their behaviors in training/evaluation
mode, if they are affected, e.g. :class:Dropout
, :class:BatchNorm
,
etc.
This is equivalent with :meth:self.train(False) \<torch.nn.Module.train>
.
See :ref:locally-disable-grad-doc
for a comparison between
.eval()
and several similar mechanisms that may be confused with it.
Returns: Module: self
# extra_repr Module
extra_repr(
self
) ->
Set the extra representation of the module.
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.
# float Module
float(
self: ~T
) -> ~T
Casts all floating point parameters and buffers to float
datatype.
.. note:: This method modifies the module in-place.
Returns: Module: self
# forward Module
forward(
self,
input_dict,
state,
seq_lens
)
Call the model with the given input tensors and state.
Any complex observations (dicts, tuples, etc.) will be unpacked by call before being passed to forward(). To access the flattened observation tensor, refer to input_dict["obs_flat"].
This method can be called any number of times. In eager execution, each call to forward() will eagerly evaluate the model. In symbolic execution, each call to forward creates a computation graph that operates over the variables of this model (i.e., shares weights).
Custom models should override this instead of call.
Args: input_dict: dictionary of input tensors, including "obs", "obs_flat", "prev_action", "prev_reward", "is_training", "eps_id", "agent_id", "infos", and "t". state: list of state tensors with sizes matching those returned by get_initial_state + the batch dimension seq_lens: 1d tensor holding input sequence lengths
Returns: A tuple consisting of the model output tensor of size [BATCH, num_outputs] and the list of new RNN state(s) if any.
.. testcode:: :skipif: True
import numpy as np
from ray.rllib.models.modelv2 import ModelV2
class MyModel(ModelV2):
# ...
def forward(self, input_dict, state, seq_lens):
model_out, self._value_out = self.base_model(
input_dict["obs"])
return model_out, state
# get_buffer Module
get_buffer(
self,
target:
) -> Tensor
Return the buffer given by target
if it exists, otherwise throw an error.
See the docstring for get_submodule
for a more detailed
explanation of this method's functionality as well as how to
correctly specify target
.
Args:
target: The fully-qualified string name of the buffer
to look for. (See get_submodule
for how to specify a
fully-qualified string.)
Returns:
torch.Tensor: The buffer referenced by target
Raises: AttributeError: If the target string references an invalid path or resolves to something that is not a buffer
# get_extra_state Module
get_extra_state(
self
) -> typing.Any
Return any extra state to include in the module's state_dict.
Implement this and a corresponding :func:set_extra_state
for your module
if you need to store extra state. This function is called when building the
module's state_dict()
.
Note that extra state should be picklable to ensure working serialization of the state_dict. We only provide provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes.
Returns: object: Any extra state to store in the module's state_dict
# get_initial_state ModelV2
get_initial_state(
self
) -> typing.List[typing.Union[, ForwardRef('jnp.ndarray'), ForwardRef('tf.Tensor'), ForwardRef('torch.Tensor')]]
Get the initial recurrent state values for the model.
Returns: List of np.array (for tf) or Tensor (for torch) objects containing the initial hidden state of an RNN, if applicable.
.. testcode:: :skipif: True
import numpy as np
from ray.rllib.models.modelv2 import ModelV2
class MyModel(ModelV2):
# ...
def get_initial_state(self):
return [
np.zeros(self.cell_size, np.float32),
np.zeros(self.cell_size, np.float32),
]
# get_parameter Module
get_parameter(
self,
target:
) -> Parameter
Return the parameter given by target
if it exists, otherwise throw an error.
See the docstring for get_submodule
for a more detailed
explanation of this method's functionality as well as how to
correctly specify target
.
Args:
target: The fully-qualified string name of the Parameter
to look for. (See get_submodule
for how to specify a
fully-qualified string.)
Returns:
torch.nn.Parameter: The Parameter referenced by target
Raises:
AttributeError: If the target string references an invalid
path or resolves to something that is not an
nn.Parameter
# get_submodule Module
get_submodule(
self,
target:
) -> Module
Return the submodule given by target
if it exists, otherwise throw an error.
For example, let's say you have an nn.Module
A
that
looks like this:
.. code-block:: text
A(
(net_b): Module(
(net_c): Module(
(conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2))
)
(linear): Linear(in_features=100, out_features=200, bias=True)
)
)
(The diagram shows an nn.Module
A
. A
has a nested
submodule net_b
, which itself has two submodules net_c
and linear
. net_c
then has a submodule conv
.)
To check whether or not we have the linear
submodule, we
would call get_submodule("net_b.linear")
. To check whether
we have the conv
submodule, we would call
get_submodule("net_b.net_c.conv")
.
The runtime of get_submodule
is bounded by the degree
of module nesting in target
. A query against
named_modules
achieves the same result, but it is O(N) in
the number of transitive modules. So, for a simple check to see
if some submodule exists, get_submodule
should always be
used.
Args: target: The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
Returns:
torch.nn.Module: The submodule referenced by target
Raises:
AttributeError: If the target string references an invalid
path or resolves to something that is not an
nn.Module
# half Module
half(
self: ~T
) -> ~T
Casts all floating point parameters and buffers to half
datatype.
.. note:: This method modifies the module in-place.
Returns: Module: self
# ipu Module
ipu(
self: ~T,
device: typing.Union[int, torch.device, NoneType] = None
) -> ~T
Move all model parameters and buffers to the IPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on IPU while being optimized.
.. note:: This method modifies the module in-place.
Arguments: device (int, optional): if specified, all parameters will be copied to that device
Returns: Module: self
# is_time_major ModelV2
is_time_major(
self
) ->
If True, data for calling this ModelV2 must be in time-major format.
Returns Whether this ModelV2 requires a time-major (TxBx...) data format.
# last_output ModelV2
last_output(
self
) -> typing.Union[, ForwardRef('jnp.ndarray'), ForwardRef('tf.Tensor'), ForwardRef('torch.Tensor')]
Returns the last output returned from calling the model.
# load_state_dict Module
load_state_dict(
self,
state_dict: typing.Mapping[str, typing.Any],
strict: = True,
assign: = False
)
Copy parameters and buffers from :attr:state_dict
into this module and its descendants.
If :attr:strict
is True
, then
the keys of :attr:state_dict
must exactly match the keys returned
by this module's :meth:~torch.nn.Module.state_dict
function.
.. warning::
If :attr:assign
is True
the optimizer must be created after
the call to :attr:load_state_dict
unless
:func:~torch.__future__.get_swap_module_params_on_conversion
is True
.
Args:
state_dict (dict): a dict containing parameters and
persistent buffers.
strict (bool, optional): whether to strictly enforce that the keys
in :attr:state_dict
match the keys returned by this module's
:meth:~torch.nn.Module.state_dict
function. Default: True
assign (bool, optional): When False
, the properties of the tensors
in the current module are preserved while when True
, the
properties of the Tensors in the state dict are preserved. The only
exception is the requires_grad
field of :class:~torch.nn.Parameter
s
for which the value from the module is preserved.
Default: False
Returns:
NamedTuple
with missing_keys
and unexpected_keys
fields:
* missing_keys is a list of str containing any keys that are expected
by this module but missing from the provided state_dict
.
* unexpected_keys is a list of str containing the keys that are not
expected by this module but present in the provided state_dict
.
Note:
If a parameter or buffer is registered as None
and its corresponding key
exists in :attr:state_dict
, :meth:load_state_dict
will raise a
RuntimeError
.
# metrics ModelV2
metrics(
self
) -> typing.Dict[str, typing.Union[, ForwardRef('jnp.ndarray'), ForwardRef('tf.Tensor'), ForwardRef('torch.Tensor')]]
Override to return custom metrics from your model.
The stats will be reported as part of the learner stats, i.e., info.learner.[policy_id, e.g. "default_policy"].model.key1=metric1
Returns: The custom metrics for this model.
# modules Module
modules(
self
) -> typing.Iterator[ForwardRef('Module')]
Return an iterator over all modules in the network.
Yields: Module: a module in the network
Note:
Duplicate modules are returned only once. In the following
example, l
will be returned only once.
Example::
>>> l = nn.Linear(2, 2)
>>> net = nn.Sequential(l, l)
>>> for idx, m in enumerate(net.modules()):
... print(idx, '->', m)
0 -> Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)
1 -> Linear(in_features=2, out_features=2, bias=True)
# mtia Module
mtia(
self: ~T,
device: typing.Union[int, torch.device, NoneType] = None
) -> ~T
Move all model parameters and buffers to the MTIA.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on MTIA while being optimized.
.. note:: This method modifies the module in-place.
Arguments: device (int, optional): if specified, all parameters will be copied to that device
Returns: Module: self
# named_buffers Module
named_buffers(
self,
prefix: ,
recurse: = True,
remove_duplicate: = True
) -> typing.Iterator[typing.Tuple[str, torch.Tensor]]
Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
Args: prefix (str): prefix to prepend to all buffer names. recurse (bool, optional): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module. Defaults to True. remove_duplicate (bool, optional): whether to remove the duplicated buffers in the result. Defaults to True.
Yields: (str, torch.Tensor): Tuple containing the name and buffer
Example::
>>> # xdoctest: +SKIP("undefined vars")
>>> for name, buf in self.named_buffers():
>>> if name in ['running_var']:
>>> print(buf.size())
# named_children Module
named_children(
self
) -> typing.Iterator[typing.Tuple[str, ForwardRef('Module')]]
Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
Yields: (str, Module): Tuple containing a name and child module
Example::
>>> # xdoctest: +SKIP("undefined vars")
>>> for name, module in model.named_children():
>>> if name in ['conv4', 'conv5']:
>>> print(module)
# named_modules Module
named_modules(
self,
memo: typing.Optional[typing.Set[ForwardRef('Module')]] = None,
prefix: ,
remove_duplicate: = True
)
Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
Args: memo: a memo to store the set of modules already added to the result prefix: a prefix that will be added to the name of the module remove_duplicate: whether to remove the duplicated module instances in the result or not
Yields: (str, Module): Tuple of name and module
Note:
Duplicate modules are returned only once. In the following
example, l
will be returned only once.
Example::
>>> l = nn.Linear(2, 2)
>>> net = nn.Sequential(l, l)
>>> for idx, m in enumerate(net.named_modules()):
... print(idx, '->', m)
0 -> ('', Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
))
1 -> ('0', Linear(in_features=2, out_features=2, bias=True))
# named_parameters Module
named_parameters(
self,
prefix: ,
recurse: = True,
remove_duplicate: = True
) -> typing.Iterator[typing.Tuple[str, torch.nn.parameter.Parameter]]
Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
Args: prefix (str): prefix to prepend to all parameter names. recurse (bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module. remove_duplicate (bool, optional): whether to remove the duplicated parameters in the result. Defaults to True.
Yields: (str, Parameter): Tuple containing the name and parameter
Example::
>>> # xdoctest: +SKIP("undefined vars")
>>> for name, param in self.named_parameters():
>>> if name in ['bias']:
>>> print(param.size())
# parameters Module
parameters(
self,
recurse: = True
) -> typing.Iterator[torch.nn.parameter.Parameter]
Return an iterator over module parameters.
This is typically passed to an optimizer.
Args: recurse (bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
Yields: Parameter: module parameter
Example::
>>> # xdoctest: +SKIP("undefined vars")
>>> for param in model.parameters():
>>> print(type(param), param.size())
\<class 'torch.Tensor'> (20L,)
\<class 'torch.Tensor'> (20L, 1L, 5L, 5L)
# register_backward_hook Module
register_backward_hook(
self,
hook: typing.Callable[[ForwardRef('Module'), typing.Union[typing.Tuple[torch.Tensor, ...], torch.Tensor], typing.Union[typing.Tuple[torch.Tensor, ...], torch.Tensor]], typing.Union[NoneType, typing.Tuple[torch.Tensor, ...], torch.Tensor]]
) ->
Register a backward hook on the module.
This function is deprecated in favor of :meth:~torch.nn.Module.register_full_backward_hook
and
the behavior of this function will change in future versions.
Returns:
:class:torch.utils.hooks.RemovableHandle
:
a handle that can be used to remove the added hook by calling
handle.remove()
# register_buffer Module
register_buffer(
self,
name: ,
tensor: typing.Optional[torch.Tensor],
persistent: = True
)
Add a buffer to the module.
This is typically used to register a buffer that should not to be
considered a model parameter. For example, BatchNorm's running_mean
is not a parameter, but is part of the module's state. Buffers, by
default, are persistent and will be saved alongside parameters. This
behavior can be changed by setting :attr:persistent
to False
. The
only difference between a persistent buffer and a non-persistent buffer
is that the latter will not be a part of this module's
:attr:state_dict
.
Buffers can be accessed as attributes using given names.
Args:
name (str): name of the buffer. The buffer can be accessed
from this module using the given name
tensor (Tensor or None): buffer to be registered. If None
, then operations
that run on buffers, such as :attr:cuda
, are ignored. If None
,
the buffer is not included in the module's :attr:state_dict
.
persistent (bool): whether the buffer is part of this module's
:attr:state_dict
.
Example::
>>> # xdoctest: +SKIP("undefined vars")
>>> self.register_buffer('running_mean', torch.zeros(num_features))
# register_forward_hook Module
register_forward_hook(
self,
hook: typing.Union[typing.Callable[[~T, typing.Tuple[typing.Any, ...], typing.Any], typing.Optional[typing.Any]], typing.Callable[[~T, typing.Tuple[typing.Any, ...], typing.Dict[str, typing.Any], typing.Any], typing.Optional[typing.Any]]],
prepend: = False,
with_kwargs: = False,
always_call: = False
) ->
Register a forward hook on the module.
The hook will be called every time after :func:forward
has computed an output.
If with_kwargs
is False
or not specified, the input contains only
the positional arguments given to the module. Keyword arguments won't be
passed to the hooks and only to the forward
. The hook can modify the
output. It can modify the input inplace but it will not have effect on
forward since this is called after :func:forward
is called. The hook
should have the following signature::
hook(module, args, output) -> None or modified output
If with_kwargs
is True
, the forward hook will be passed the
kwargs
given to the forward function and be expected to return the
output possibly modified. The hook should have the following signature::
hook(module, args, kwargs, output) -> None or modified output
Args:
hook (Callable): The user defined hook to be registered.
prepend (bool): If True
, the provided hook
will be fired
before all existing forward
hooks on this
:class:torch.nn.modules.Module
. Otherwise, the provided
hook
will be fired after all existing forward
hooks on
this :class:torch.nn.modules.Module
. Note that global
forward
hooks registered with
:func:register_module_forward_hook
will fire before all hooks
registered by this method.
Default: False
with_kwargs (bool): If True
, the hook
will be passed the
kwargs given to the forward function.
Default: False
always_call (bool): If True
the hook
will be run regardless of
whether an exception is raised while calling the Module.
Default: False
Returns:
:class:torch.utils.hooks.RemovableHandle
:
a handle that can be used to remove the added hook by calling
handle.remove()
# register_forward_pre_hook Module
register_forward_pre_hook(
self,
hook: typing.Union[typing.Callable[[~T, typing.Tuple[typing.Any, ...]], typing.Optional[typing.Any]], typing.Callable[[~T, typing.Tuple[typing.Any, ...], typing.Dict[str, typing.Any]], typing.Optional[typing.Tuple[typing.Any, typing.Dict[str, typing.Any]]]]],
prepend: = False,
with_kwargs: = False
) ->
Register a forward pre-hook on the module.
The hook will be called every time before :func:forward
is invoked.
If with_kwargs
is false or not specified, the input contains only
the positional arguments given to the module. Keyword arguments won't be
passed to the hooks and only to the forward
. The hook can modify the
input. User can either return a tuple or a single modified value in the
hook. We will wrap the value into a tuple if a single value is returned
(unless that value is already a tuple). The hook should have the
following signature::
hook(module, args) -> None or modified input
If with_kwargs
is true, the forward pre-hook will be passed the
kwargs given to the forward function. And if the hook modifies the
input, both the args and kwargs should be returned. The hook should have
the following signature::
hook(module, args, kwargs) -> None or a tuple of modified input and kwargs
Args:
hook (Callable): The user defined hook to be registered.
prepend (bool): If true, the provided hook
will be fired before
all existing forward_pre
hooks on this
:class:torch.nn.modules.Module
. Otherwise, the provided
hook
will be fired after all existing forward_pre
hooks
on this :class:torch.nn.modules.Module
. Note that global
forward_pre
hooks registered with
:func:register_module_forward_pre_hook
will fire before all
hooks registered by this method.
Default: False
with_kwargs (bool): If true, the hook
will be passed the kwargs
given to the forward function.
Default: False
Returns:
:class:torch.utils.hooks.RemovableHandle
:
a handle that can be used to remove the added hook by calling
handle.remove()
# register_full_backward_hook Module
register_full_backward_hook(
self,
hook: typing.Callable[[ForwardRef('Module'), typing.Union[typing.Tuple[torch.Tensor, ...], torch.Tensor], typing.Union[typing.Tuple[torch.Tensor, ...], torch.Tensor]], typing.Union[NoneType, typing.Tuple[torch.Tensor, ...], torch.Tensor]],
prepend: = False
) ->
Register a backward hook on the module.
The hook will be called every time the gradients with respect to a module are computed, i.e. the hook will execute if and only if the gradients with respect to module outputs are computed. The hook should have the following signature::
hook(module, grad_input, grad_output) -> tuple(Tensor) or None
The :attr:grad_input
and :attr:grad_output
are tuples that contain the gradients
with respect to the inputs and outputs respectively. The hook should
not modify its arguments, but it can optionally return a new gradient with
respect to the input that will be used in place of :attr:grad_input
in
subsequent computations. :attr:grad_input
will only correspond to the inputs given
as positional arguments and all kwarg arguments are ignored. Entries
in :attr:grad_input
and :attr:grad_output
will be None
for all non-Tensor
arguments.
For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.
.. warning :: Modifying inputs or outputs inplace is not allowed when using backward hooks and will raise an error.
Args:
hook (Callable): The user-defined hook to be registered.
prepend (bool): If true, the provided hook
will be fired before
all existing backward
hooks on this
:class:torch.nn.modules.Module
. Otherwise, the provided
hook
will be fired after all existing backward
hooks on
this :class:torch.nn.modules.Module
. Note that global
backward
hooks registered with
:func:register_module_full_backward_hook
will fire before
all hooks registered by this method.
Returns:
:class:torch.utils.hooks.RemovableHandle
:
a handle that can be used to remove the added hook by calling
handle.remove()
# register_full_backward_pre_hook Module
register_full_backward_pre_hook(
self,
hook: typing.Callable[[ForwardRef('Module'), typing.Union[typing.Tuple[torch.Tensor, ...], torch.Tensor]], typing.Union[NoneType, typing.Tuple[torch.Tensor, ...], torch.Tensor]],
prepend: = False
) ->
Register a backward pre-hook on the module.
The hook will be called every time the gradients for the module are computed. The hook should have the following signature::
hook(module, grad_output) -> tuple[Tensor] or None
The :attr:grad_output
is a tuple. The hook should
not modify its arguments, but it can optionally return a new gradient with
respect to the output that will be used in place of :attr:grad_output
in
subsequent computations. Entries in :attr:grad_output
will be None
for
all non-Tensor arguments.
For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.
.. warning :: Modifying inputs inplace is not allowed when using backward hooks and will raise an error.
Args:
hook (Callable): The user-defined hook to be registered.
prepend (bool): If true, the provided hook
will be fired before
all existing backward_pre
hooks on this
:class:torch.nn.modules.Module
. Otherwise, the provided
hook
will be fired after all existing backward_pre
hooks
on this :class:torch.nn.modules.Module
. Note that global
backward_pre
hooks registered with
:func:register_module_full_backward_pre_hook
will fire before
all hooks registered by this method.
Returns:
:class:torch.utils.hooks.RemovableHandle
:
a handle that can be used to remove the added hook by calling
handle.remove()
# register_load_state_dict_post_hook Module
register_load_state_dict_post_hook(
self,
hook
)
Register a post-hook to be run after module's :meth:~nn.Module.load_state_dict
is called.
It should have the following signature:: hook(module, incompatible_keys) -> None
The module
argument is the current module that this hook is registered
on, and the incompatible_keys
argument is a NamedTuple
consisting
of attributes missing_keys
and unexpected_keys
. missing_keys
is a list
of str
containing the missing keys and
unexpected_keys
is a list
of str
containing the unexpected keys.
The given incompatible_keys can be modified inplace if needed.
Note that the checks performed when calling :func:load_state_dict
with
strict=True
are affected by modifications the hook makes to
missing_keys
or unexpected_keys
, as expected. Additions to either
set of keys will result in an error being thrown when strict=True
, and
clearing out both missing and unexpected keys will avoid an error.
Returns:
:class:torch.utils.hooks.RemovableHandle
:
a handle that can be used to remove the added hook by calling
handle.remove()
# register_load_state_dict_pre_hook Module
register_load_state_dict_pre_hook(
self,
hook
)
Register a pre-hook to be run before module's :meth:~nn.Module.load_state_dict
is called.
It should have the following signature:: hook(module, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) -> None # noqa: B950
Arguments: hook (Callable): Callable hook that will be invoked before loading the state dict.
# register_module Module
register_module(
self,
name: ,
module: typing.Optional[ForwardRef('Module')]
)
Alias for :func:add_module
.
# register_parameter Module
register_parameter(
self,
name: ,
param: typing.Optional[torch.nn.parameter.Parameter]
)
Add a parameter to the module.
The parameter can be accessed as an attribute using given name.
Args:
name (str): name of the parameter. The parameter can be accessed
from this module using the given name
param (Parameter or None): parameter to be added to the module. If
None
, then operations that run on parameters, such as :attr:cuda
,
are ignored. If None
, the parameter is not included in the
module's :attr:state_dict
.
# register_state_dict_post_hook Module
register_state_dict_post_hook(
self,
hook
)
Register a post-hook for the :meth:~torch.nn.Module.state_dict
method.
It should have the following signature:: hook(module, state_dict, prefix, local_metadata) -> None
The registered hooks can modify the state_dict
inplace.
# register_state_dict_pre_hook Module
register_state_dict_pre_hook(
self,
hook
)
Register a pre-hook for the :meth:~torch.nn.Module.state_dict
method.
It should have the following signature:: hook(module, prefix, keep_vars) -> None
The registered hooks can be used to perform pre-processing before the state_dict
call is made.
# requires_grad_ Module
requires_grad_(
self: ~T,
requires_grad: = True
) -> ~T
Change if autograd should record operations on parameters in this module.
This method sets the parameters' :attr:requires_grad
attributes
in-place.
This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).
See :ref:locally-disable-grad-doc
for a comparison between
.requires_grad_()
and several similar mechanisms that may be confused with it.
Args:
requires_grad (bool): whether autograd should record operations on
parameters in this module. Default: True
.
Returns: Module: self
# set_extra_state Module
set_extra_state(
self,
state: typing.Any
)
Set extra state contained in the loaded state_dict
.
This function is called from :func:load_state_dict
to handle any extra state
found within the state_dict
. Implement this function and a corresponding
:func:get_extra_state
for your module if you need to store extra state within its
state_dict
.
Args:
state (dict): Extra state from the state_dict
# set_submodule Module
set_submodule(
self,
target: ,
module: Module
)
Set the submodule given by target
if it exists, otherwise throw an error.
For example, let's say you have an nn.Module
A
that
looks like this:
.. code-block:: text
A(
(net_b): Module(
(net_c): Module(
(conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2))
)
(linear): Linear(in_features=100, out_features=200, bias=True)
)
)
(The diagram shows an nn.Module
A
. A
has a nested
submodule net_b
, which itself has two submodules net_c
and linear
. net_c
then has a submodule conv
.)
To overide the Conv2d
with a new submodule Linear
, you
would call
set_submodule("net_b.net_c.conv", nn.Linear(33, 16))
.
Args: target: The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.) module: The module to set the submodule to.
Raises:
ValueError: If the target string is empty
AttributeError: If the target string references an invalid
path or resolves to something that is not an
nn.Module
# share_memory Module
share_memory(
self: ~T
) -> ~T
See :meth:torch.Tensor.share_memory_
.
# state_dict Module
state_dict(
self,
*args,
destination = None,
prefix,
keep_vars = False
)
Return a dictionary containing references to the whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are
included. Keys are corresponding parameter and buffer names.
Parameters and buffers set to None
are not included.
.. note:: The returned object is a shallow copy. It contains references to the module's parameters and buffers.
.. warning::
Currently state_dict()
also accepts positional arguments for
destination
, prefix
and keep_vars
in order. However,
this is being deprecated and keyword arguments will be enforced in
future releases.
.. warning::
Please avoid the use of argument destination
as it is not
designed for end-users.
Args:
destination (dict, optional): If provided, the state of module will
be updated into the dict and the same object is returned.
Otherwise, an OrderedDict
will be created and returned.
Default: None
.
prefix (str, optional): a prefix added to parameter and buffer
names to compose the keys in state_dict. Default: ''
.
keep_vars (bool, optional): by default the :class:~torch.Tensor
s
returned in the state dict are detached from autograd. If it's
set to True
, detaching will not be performed.
Default: False
.
Returns: dict: a dictionary containing a whole state of the module
Example::
>>> # xdoctest: +SKIP("undefined vars")
>>> module.state_dict().keys()
['bias', 'weight']
# to Module
to(
self,
*args,
**kwargs
)
Move and/or cast the parameters and buffers.
This can be called as
.. function:: to(device=None, dtype=None, non_blocking=False) :noindex:
.. function:: to(dtype, non_blocking=False) :noindex:
.. function:: to(tensor, non_blocking=False) :noindex:
.. function:: to(memory_format=torch.channels_last) :noindex:
Its signature is similar to :meth:torch.Tensor.to
, but only accepts
floating point or complex :attr:dtype
\ s. In addition, this method will
only cast the floating point or complex parameters and buffers to :attr:dtype
(if given). The integral parameters and buffers will be moved
:attr:device
, if that is given, but with dtypes unchanged. When
:attr:non_blocking
is set, it tries to convert/move asynchronously
with respect to the host if possible, e.g., moving CPU Tensors with
pinned memory to CUDA devices.
See below for examples.
.. note:: This method modifies the module in-place.
Args:
device (:class:torch.device
): the desired device of the parameters
and buffers in this module
dtype (:class:torch.dtype
): the desired floating point or complex dtype of
the parameters and buffers in this module
tensor (torch.Tensor): Tensor whose dtype and device are the desired
dtype and device for all parameters and buffers in this module
memory_format (:class:torch.memory_format
): the desired memory
format for 4D parameters and buffers in this module (keyword
only argument)
Returns: Module: self
Examples::
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> linear = nn.Linear(2, 2)
>>> linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]])
>>> linear.to(torch.double)
Linear(in_features=2, out_features=2, bias=True)
>>> linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]], dtype=torch.float64)
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA1)
>>> gpu1 = torch.device("cuda:1")
>>> linear.to(gpu1, dtype=torch.half, non_blocking=True)
Linear(in_features=2, out_features=2, bias=True)
>>> linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1')
>>> cpu = torch.device("cpu")
>>> linear.to(cpu)
Linear(in_features=2, out_features=2, bias=True)
>>> linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=torch.float16)
>>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble)
>>> linear.weight
Parameter containing:
tensor([[ 0.3741+0.j, 0.2382+0.j],
[ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128)
>>> linear(torch.ones(3, 2, dtype=torch.cdouble))
tensor([[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128)
# to_empty Module
to_empty(
self: ~T,
device: typing.Union[int, str, torch.device, NoneType],
recurse: = True
) -> ~T
Move the parameters and buffers to the specified device without copying storage.
Args:
device (:class:torch.device
): The desired device of the parameters
and buffers in this module.
recurse (bool): Whether parameters and buffers of submodules should
be recursively moved to the specified device.
Returns: Module: self
# train Module
train(
self: ~T,
mode: = True
) -> ~T
Set the module in training mode.
This has any effect only on certain modules. See documentations of
particular modules for details of their behaviors in training/evaluation
mode, if they are affected, e.g. :class:Dropout
, :class:BatchNorm
,
etc.
Args:
mode (bool): whether to set training mode (True
) or evaluation
mode (False
). Default: True
.
Returns: Module: self
# trainable_variables ModelV2
trainable_variables(
self,
as_dict: = False
) -> typing.Union[typing.List[typing.Union[, ForwardRef('jnp.ndarray'), ForwardRef('tf.Tensor'), ForwardRef('torch.Tensor')]], typing.Dict[str, typing.Union[, ForwardRef('jnp.ndarray'), ForwardRef('tf.Tensor'), ForwardRef('torch.Tensor')]]]
Returns the list of trainable variables for this model.
Args: as_dict: Whether variables should be returned as dict-values (using descriptive keys).
Returns:
The list (or dict if as_dict
is True) of all trainable
(tf)/requires_grad (torch) variables of this ModelV2.
# type Module
type(
self: ~T,
dst_type: typing.Union[torch.dtype, str]
) -> ~T
Casts all parameters and buffers to :attr:dst_type
.
.. note:: This method modifies the module in-place.
Args: dst_type (type or string): the desired type
Returns: Module: self
# value_function ModelV2
value_function(
self
)
Returns the value function output for the most recent forward pass.
Note that a forward
call has to be performed first, before this
methods can return anything and thus that calling this method does not
cause an extra forward pass through the network.
Returns: Value estimate tensor of shape [BATCH].
# variables ModelV2
variables(
self,
as_dict: = False
) -> typing.Union[typing.List[typing.Union[, ForwardRef('jnp.ndarray'), ForwardRef('tf.Tensor'), ForwardRef('torch.Tensor')]], typing.Dict[str, typing.Union[, ForwardRef('jnp.ndarray'), ForwardRef('tf.Tensor'), ForwardRef('torch.Tensor')]]]
Returns the list (or a dict) of variables for this model.
Args: as_dict: Whether variables should be returned as dict-values (using descriptive str keys).
Returns:
The list (or dict if as_dict
is True) of all variables of this
ModelV2.
# xpu Module
xpu(
self: ~T,
device: typing.Union[int, torch.device, NoneType] = None
) -> ~T
Move all model parameters and buffers to the XPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on XPU while being optimized.
.. note:: This method modifies the module in-place.
Arguments: device (int, optional): if specified, all parameters will be copied to that device
Returns: Module: self
# zero_grad Module
zero_grad(
self,
set_to_none: = True
)
Reset gradients of all model parameters.
See similar function under :class:torch.optim.Optimizer
for more context.
Args:
set_to_none (bool): instead of setting to zero, set the grads to None.
See :meth:torch.optim.Optimizer.zero_grad
for details.
# _annotated_type ModelV2
# _get_backward_hooks Module
_get_backward_hooks(
self
)
Return the backward hooks for use in the call function.
It returns two lists, one with the full backward hooks and one with the non-full backward hooks.
# _load_from_state_dict Module
_load_from_state_dict(
self,
state_dict,
prefix,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs
)
Copy parameters and buffers from :attr:state_dict
into only this module, but not its descendants.
This is called on every submodule
in :meth:~torch.nn.Module.load_state_dict
. Metadata saved for this
module in input :attr:state_dict
is provided as :attr:local_metadata
.
For state dicts without metadata, :attr:local_metadata
is empty.
Subclasses can achieve class-specific backward compatible loading using
the version number at local_metadata.get("version", None)
.
Additionally, :attr:local_metadata
can also contain the key
assign_to_params_buffers
that indicates whether keys should be
assigned their corresponding tensor in the state_dict.
.. note::
:attr:state_dict
is not the same object as the input
:attr:state_dict
to :meth:~torch.nn.Module.load_state_dict
. So
it can be modified.
Args:
state_dict (dict): a dict containing parameters and
persistent buffers.
prefix (str): the prefix for parameters and buffers used in this
module
local_metadata (dict): a dict containing the metadata for this module.
See
strict (bool): whether to strictly enforce that the keys in
:attr:state_dict
with :attr:prefix
match the names of
parameters and buffers in this module
missing_keys (list of str): if strict=True
, add missing keys to
this list
unexpected_keys (list of str): if strict=True
, add unexpected
keys to this list
error_msgs (list of str): error messages should be added to this
list, and will be reported together in
:meth:~torch.nn.Module.load_state_dict
# _named_members Module
_named_members(
self,
get_members_fn,
prefix,
recurse = True,
remove_duplicate: = True
)
Help yield various names + members of modules.
# _register_load_state_dict_pre_hook Module
_register_load_state_dict_pre_hook(
self,
hook,
with_module = False
)
See :meth:~torch.nn.Module.register_load_state_dict_pre_hook
for details.
A subtle difference is that if with_module
is set to False
, then the
hook will not take the module
as the first argument whereas
:meth:~torch.nn.Module.register_load_state_dict_pre_hook
always takes the
module
as the first argument.
Arguments: hook (Callable): Callable hook that will be invoked before loading the state dict. with_module (bool, optional): Whether or not to pass the module instance to the hook as the first parameter.
# _register_state_dict_hook Module
_register_state_dict_hook(
self,
hook
)
Register a post-hook for the :meth:~torch.nn.Module.state_dict
method.
It should have the following signature:: hook(module, state_dict, prefix, local_metadata) -> None or state_dict
The registered hooks can modify the state_dict
inplace or return a new one.
If a new state_dict
is returned, it will only be respected if it is the root
module that :meth:~nn.Module.state_dict
is called from.
# _save_to_state_dict Module
_save_to_state_dict(
self,
destination,
prefix,
keep_vars
)
Save module state to the destination
dictionary.
The destination
dictionary will contain the state
of the module, but not its descendants. This is called on every
submodule in :meth:~torch.nn.Module.state_dict
.
In rare cases, subclasses can achieve class-specific behavior by overriding this method with custom logic.
Args: destination (dict): a dict where state will be stored prefix (str): the prefix for parameters and buffers used in this module