discrete_optimization.generic_tools.dashboard package
Submodules
discrete_optimization.generic_tools.dashboard.config module
- class discrete_optimization.generic_tools.dashboard.config.ConfigStore[source]
Bases:
object
Store experiments config and mapping to their names
- add(config: dict[str, DictConfig] | Hashable) None [source]
Add a config to the store.
Ensure bijection between names and configs. If name already given, use it. If not, construct it from solver parameters. If 2 names given in different occurences raise an error. If 2 different config share the same name, raise an error.
- discrete_optimization.generic_tools.dashboard.config.convert_config_dict2hashable(config: dict[str, DictConfig] | Hashable) tuple[str, HashableConfig] | Hashable [source]
- discrete_optimization.generic_tools.dashboard.config.convert_config_hashable2dict(config: tuple[str, HashableConfig] | Hashable) dict[str, DictConfig] | Hashable [source]
discrete_optimization.generic_tools.dashboard.dashboard module
discrete_optimization.generic_tools.dashboard.plots module
discrete_optimization.generic_tools.dashboard.preprocess module
- discrete_optimization.generic_tools.dashboard.preprocess.aggregate_results_by_config(results: list[DataFrame], configs: Iterable[str]) dict[str, DataFrame] [source]
- discrete_optimization.generic_tools.dashboard.preprocess.aggregate_results_config(results: list[DataFrame], config: str) DataFrame [source]
- discrete_optimization.generic_tools.dashboard.preprocess.clip_df(df: DataFrame, clip_value: float) DataFrame [source]
- discrete_optimization.generic_tools.dashboard.preprocess.clip_results(results: list[DataFrame], clip_value: float) list[DataFrame] [source]
- discrete_optimization.generic_tools.dashboard.preprocess.compute_best_metrics_by_xp(results: list[DataFrame], metrics: list[str]) DataFrame [source]
- discrete_optimization.generic_tools.dashboard.preprocess.compute_extra_metrics(results: list[DataFrame]) None [source]
- discrete_optimization.generic_tools.dashboard.preprocess.compute_extra_metrics_df(df: DataFrame) None [source]
- discrete_optimization.generic_tools.dashboard.preprocess.compute_stat_by_config(results_by_config: dict[str, DataFrame], stat: str = 'mean', q: float = 0.5, instances: list[str] | None = None) dict[str, DataFrame] [source]
- discrete_optimization.generic_tools.dashboard.preprocess.compute_stat_from_df_config(df_config: DataFrame, stat: str = 'mean', q: float = 0.5, instances: list[str] | None = None) DataFrame [source]
- discrete_optimization.generic_tools.dashboard.preprocess.compute_summary_agg_ranks_and_dist_to_best_metric(df_best_metric_by_xp: DataFrame, metric: str = 'fit', configs: list[str] | None = None, instances: list[str] | None = None, stat: str = 'mean', q: float = 0.5, minimizing: bool = False) DataFrame [source]
- discrete_optimization.generic_tools.dashboard.preprocess.construct_summary_metric_agg(stat_by_config: dict[str, DataFrame], nb_xps_by_config: dict[str, int], nb_xps_wo_sol_by_config: dict[str, int], configs: list[str] | None = None) DataFrame [source]
- discrete_optimization.generic_tools.dashboard.preprocess.construct_summary_nbsolved_instances(nbsolvedinstances_by_config: dict[str, Series], nb_xps_by_config: dict[str, int], configs: Container[str] | None = None) DataFrame [source]
- discrete_optimization.generic_tools.dashboard.preprocess.convert_nb2percentage_solvedinstances(ser: Series, n_xps: int) Series [source]
- discrete_optimization.generic_tools.dashboard.preprocess.convert_nb2percentage_solvedinstances_by_config(nbsolvedinstances_by_config: dict[str, Series], n_xps_by_config: dict[str, int]) dict[str, Series] [source]
- discrete_optimization.generic_tools.dashboard.preprocess.convert_solvetimes2nbsolvedinstances(solvetimes: list[float], time_label: str = 'time') Series [source]
- discrete_optimization.generic_tools.dashboard.preprocess.drop_empty_results(results: list[DataFrame]) list[DataFrame] [source]
- discrete_optimization.generic_tools.dashboard.preprocess.extract_configs(results: list[DataFrame]) set[str] [source]
- discrete_optimization.generic_tools.dashboard.preprocess.extract_empty_xps_metadata(results: list[DataFrame]) DataFrame [source]
- discrete_optimization.generic_tools.dashboard.preprocess.extract_instances(results: list[DataFrame]) set[str] [source]
- discrete_optimization.generic_tools.dashboard.preprocess.extract_instances_with_sol_by_config(results: list[DataFrame]) dict[str, set[str]] [source]
- discrete_optimization.generic_tools.dashboard.preprocess.extract_metrics(results: list[DataFrame]) set[str] [source]
- discrete_optimization.generic_tools.dashboard.preprocess.extract_nb_xps_by_config(results: list[DataFrame]) dict[str, int] [source]
- discrete_optimization.generic_tools.dashboard.preprocess.extract_nb_xps_w_n_wo_sol_by_config(results: list[DataFrame], configs: list[str], instances: list[str]) tuple[dict[str, int], dict[str, int]] [source]
- discrete_optimization.generic_tools.dashboard.preprocess.extract_nbsolvedinstances_by_config(results: list[DataFrame]) dict[str, Series] [source]
- discrete_optimization.generic_tools.dashboard.preprocess.extract_solvetimes_by_config(results: list[DataFrame]) dict[str, list[float]] [source]
- discrete_optimization.generic_tools.dashboard.preprocess.filter_results(results: list[DataFrame], configs: Container[str], instances: Container[str]) list[DataFrame] [source]
- discrete_optimization.generic_tools.dashboard.preprocess.get_experiment_name(df: DataFrame | Series, with_run_nb=True) str [source]
- discrete_optimization.generic_tools.dashboard.preprocess.get_stat_name(stat: str, q: float) str [source]
- discrete_optimization.generic_tools.dashboard.preprocess.get_status_str(df: DataFrame) str [source]
- discrete_optimization.generic_tools.dashboard.preprocess.has_multiple_runs(results: list[DataFrame]) bool [source]
- discrete_optimization.generic_tools.dashboard.preprocess.normalize_df(df: DataFrame, config_store: ConfigStore, timedelta_unit='s') None [source]
- discrete_optimization.generic_tools.dashboard.preprocess.normalize_metadata(metadata: dict[str, Any], config_store: ConfigStore) None [source]
- discrete_optimization.generic_tools.dashboard.preprocess.normalize_results(results: list[DataFrame], config_store: ConfigStore) None [source]