discrete_optimization.generic_tools.hub_solver.optal package
Submodules
discrete_optimization.generic_tools.hub_solver.optal.generic_optal module
- class discrete_optimization.generic_tools.hub_solver.optal.generic_optal.OptalBasicCallback(stats: dict)[source]
Bases:
BasicStatsCallback
- class discrete_optimization.generic_tools.hub_solver.optal.generic_optal.OptalSolver(problem: Problem, params_objective_function: ParamsObjectiveFunction | None = None, **kwargs: Any)[source]
Bases:
CpSolver- add_bound_constraint(var: Any, sign: SignEnum, value: int) list[Any][source]
Add constraint of bound type on an integer variable (or expression) of the underlying cp model.
var must compare to value according to value.
- Parameters:
var
sign
value
Returns:
- build_command(parameters_cp: ParametersCp | None = None, time_limit: int = 10, **args: Any)[source]
Build the command line call for optal cp. You can pass parameters from the Parameters class of optal cp for example : searchType=fds, worker0-1.noOverlapPropagationLevel=4 if you want worker 0 and 1 to use this parameters etc. TODO : list such parameters in hyperparameter of this wrapped solver.
- init_model(**args: Any) None[source]
Instantiate a CP model instance
Afterwards, self.instance should not be None anymore.
- solve(callbacks: list[Callback] | None = None, parameters_cp: ParametersCp | None = None, time_limit: int = 10, do_not_retrieve_solutions: bool = False, verbose: bool = True, debug: bool = False, **args: Any) ResultStorage[source]
Generic solving function.
- Parameters:
callbacks – list of callbacks used to hook into the various stage of the solve
**kwargs – any argument specific to the solver
Solvers deriving from SolverDo should use callbacks methods .on_step_end(), … during solve(). But some solvers are not yet updated and are just ignoring it.
Returns (ResultStorage): a result object containing potentially a pool of solutions to a discrete-optimization problem