discrete_optimization.singlemachine package
Subpackages
Submodules
discrete_optimization.singlemachine.parser module
- discrete_optimization.singlemachine.parser.get_data_available(data_folder: str | None = None, data_home: str | None = None) list[str] [source]
Get datasets available for tsp.
- Params:
- data_folder: folder where datasets for weighted tardiness problem should be found.
If None, we look in “wt” subdirectory of data_home.
- data_home: root directory for all datasets. Is None, set by
default to “~/discrete_optimization_data “
- discrete_optimization.singlemachine.parser.parse_file(path: str, num_jobs: int | None = None)[source]
- discrete_optimization.singlemachine.parser.parse_wt_content(file_content: str, num_jobs: int) list[WeightedTardinessProblem] [source]
Parses a weighted tardiness file with a known number of jobs per instance.
- Parameters:
file_content (str) – The full content of the text file.
num_jobs (int) – The number of jobs per instance (e.g., 40 for wt40.txt).
- Returns:
A list of parsed problem instances.
- Return type:
List[WeightedTardinessProblem]
discrete_optimization.singlemachine.problem module
- class discrete_optimization.singlemachine.problem.WTSolution(problem: WeightedTardinessProblem, schedule: list[tuple[int, int]])[source]
Bases:
Solution
- class discrete_optimization.singlemachine.problem.WeightedTardinessProblem(num_jobs: int, processing_times: List[int], weights: List[int], due_dates: List[int], release_dates: List[int] | None = None)[source]
Bases:
Problem
Represents a single instance of the single-machine weighted tardiness problem.
- evaluate(variable: WTSolution) dict[str, float] [source]
Evaluate a given solution object for the given problem.
This method should return a dictionnary of KPI, that can be then used for mono or multiobjective optimization.
- Parameters:
variable (Solution) – the Solution object to evaluate.
Returns: dictionnary of float kpi for the solution.
- get_attribute_register() EncodingRegister [source]
Returns how the Solution should be encoded.
Returns (EncodingRegister): content of the encoding of the solution
- get_dummy_solution() WTSolution [source]
- get_objective_register() ObjectiveRegister [source]
Returns the objective definition.
Returns (ObjectiveRegister): object defining the objective criteria.
- get_solution_type() type[Solution] [source]
Returns the class implementation of a Solution.
Returns (class): class object of the given Problem.
- satisfy(variable: WTSolution) bool [source]
Computes if a solution satisfies or not the constraints of the problem.
- Parameters:
variable – the Solution object to check satisfability
Returns (bool): boolean true if the constraints are fulfilled, false elsewhere.