discrete_optimization.singlemachine.solvers package
Submodules
discrete_optimization.singlemachine.solvers.cpsat module
- class discrete_optimization.singlemachine.solvers.cpsat.CpsatWTSolver(problem: Problem, params_objective_function: ParamsObjectiveFunction | None = None, **kwargs: Any)[source]
Bases:
OrtoolsCpSatSolver
- init_model(**args: Any) None [source]
Instantiate a CP model instance
Afterwards, self.instance should not be None anymore.
- problem: WeightedTardinessProblem
- retrieve_solution(cpsolvercb: CpSolverSolutionCallback) Solution [source]
Construct a do solution from the cpsat solver internal solution.
It will be called each time the cpsat solver find a new solution. At that point, value of internal variables are accessible via cpsolvercb.Value(VARIABLE_NAME).
- Parameters:
cpsolvercb – the ortools callback called when the cpsat solver finds a new solution.
- Returns:
the intermediate solution, at do format.
- variables: dict
discrete_optimization.singlemachine.solvers.dp module
- class discrete_optimization.singlemachine.solvers.dp.DpWTSolver(problem: WeightedTardinessProblem, params_objective_function: ParamsObjectiveFunction | None = None, **kwargs: Any)[source]
Bases:
DpSolver
,WarmstartMixin
- hyperparameters: list[Hyperparameter] = [CategoricalHyperparameter(name='add_dominated_transition', default=False, depends_on=None, name_in_kwargs='add_dominated_transition')]
Hyperparameters available for this solver.
- These hyperparameters are to be feed to **kwargs found in
__init__()
init_model() (when available)
solve()
- init_model(**kwargs: Any) None [source]
Initialize internal model used to solve.
Can initialize a ortools, milp, gurobi, … model.
- problem: WeightedTardinessProblem
- set_warm_start(solution: WTSolution) None [source]
Make the solver warm start from the given solution.