discrete_optimization.generic_tools.robustness package
Submodules
discrete_optimization.generic_tools.robustness.robustness_tool module
- class discrete_optimization.generic_tools.robustness.robustness_tool.RobustnessTool(base_instance: RcpspProblem, all_instances: list[RcpspProblem], train_instance: list[RcpspProblem] | None = None, test_instance: list[RcpspProblem] | None = None, proportion_train: float = 0.8)[source]
Bases:
object- get_models(aggreg_apriori: bool = True, aggreg_aposteriori: bool = True) list[RcpspProblem][source]
- get_statistics_df(results: ndarray[tuple[Any, ...], dtype[float64]]) DataFrame[source]
Computes aggregate statistics for each method. Returns a Pandas DataFrame with Mean, Std, Min, Max, and Feasibility %.
- plot(results: ndarray[tuple[Any, ...], dtype[float64]], image_tag: str = '') None[source]
Original plot method (Histograms)
- plot_boxplots(results: ndarray[tuple[Any, ...], dtype[float64]], image_tag: str = '') None[source]
Plots Boxplots for better comparison of distributions and outliers.
- solve_and_retrieve(solve_models_function: Callable[[RcpspProblem], ResultStorage], apriori: bool = True, aposteriori: bool = True, nb_process: int = 8) ndarray[tuple[Any, ...], dtype[float64]][source]
- discrete_optimization.generic_tools.robustness.robustness_tool.solve_model(model: Problem, postpro: bool = True, nb_iteration: int = 500) ResultStorage[source]