discrete_optimization.workforce.commons package
Submodules
discrete_optimization.workforce.commons.fairness_modeling module
discrete_optimization.workforce.commons.fairness_modeling_cpmpy module
- discrete_optimization.workforce.commons.fairness_modeling_cpmpy.cumulate_value_per_teams(used_team: dict[int, Expression] | NDVarArray, allocation_variables: NDVarArray | list[dict[int, Expression]], value_per_task: list[int], number_teams: int | None = None, name_value: str | None = '')[source]
- used_team :
either a dict : {index_team: boolean_var} for index_team in range(nb_teams)
or simply an array of size (nb_teams)
- allocation_variables :
either a 2D array of vars : [index_activity, index_team] or a list of size (nb_activities) of dict : {index_team: boolean} for index_team in “available_teams for a given task”
- value per task :
list of values linked to task, to aggregate for a given team.
- discrete_optimization.workforce.commons.fairness_modeling_cpmpy.cumulate_value_per_teams_version_2(used_team: dict[int, Expression] | NDVarArray, allocation_variables: NDVarArray | list[dict[int, Expression]], value_per_task: list[int], number_teams: int | None = None, name_value: str | None = '')[source]
- used_team :
either a dict : {index_team: boolean_var} for index_team in range(nb_teams)
or simply an array of size (nb_teams)
- allocation_variables :
either a 2D array of vars : [index_activity, index_team] or a list of size (nb_activities) of dict : {index_team: boolean} for index_team in “available_teams for a given task”
- value per task :
list of values linked to task, to aggregate for a given team.
- discrete_optimization.workforce.commons.fairness_modeling_cpmpy.define_fairness_criteria_from_cumulated_value(used_team: dict[int, Expression] | NDVarArray, cumulated_value_per_team: NDVarArray, value_per_task: list[int], modelisation_dispersion: ModelisationDispersion, cumulated_value_per_team_nz: NDVarArray | None = None, name_value: str | None = '')[source]
- discrete_optimization.workforce.commons.fairness_modeling_cpmpy.model_fairness(used_team: dict[int, Expression] | NDVarArray, allocation_variables: NDVarArray | list[dict[int, Expression]], value_per_task: list[int], modelisation_dispersion: ModelisationDispersion, number_teams: int | None = None, name_value: str | None = '')[source]
discrete_optimization.workforce.commons.fairness_modeling_ortools module
- discrete_optimization.workforce.commons.fairness_modeling_ortools.cumulate_value_per_teams(used_team: dict[int, IntVar] | list[IntVar], allocation_variables: list[list[IntVar]] | list[dict[int, IntVar]], value_per_task: list[int], cp_model: CpModel, number_teams: int | None = None, name_value: str | None = '')[source]
- used_team :
either a dict : {index_team: boolean_var} for index_team in range(nb_teams)
or simply an array of size (nb_teams)
- allocation_variables :
either a 2D array of vars : [index_activity, index_team] or a list of size (nb_activities) of dict : {index_team: boolean} for index_team in “available_teams for a given task”
- value per task :
list of values linked to task, to aggregate for a given team.
- discrete_optimization.workforce.commons.fairness_modeling_ortools.cumulate_value_per_teams_version_2(used_team: dict[int, IntVar] | list[IntVar], allocation_variables: list[list[IntVar]] | list[dict[int, IntVar]], value_per_task: list[int], cp_model: CpModel, number_teams: int | None = None, name_value: str | None = '')[source]
- used_team :
either a dict : {index_team: boolean_var} for index_team in range(nb_teams)
or simply an array of size (nb_teams)
- allocation_variables :
either a 2D array of vars : [index_activity, index_team] or a list of size (nb_activities) of dict : {index_team: boolean} for index_team in “available_teams for a given task”
- value per task :
list of values linked to task, to aggregate for a given team.
- discrete_optimization.workforce.commons.fairness_modeling_ortools.define_fairness_criteria_from_cumulated_value(used_team: dict[int, IntVar] | list[IntVar], cumulated_value_per_team: list[IntVar], value_per_task: list[int], modelisation_dispersion: ModelisationDispersion, cp_model: CpModel, cumulated_value_per_team_nz: list[IntVar] | None = None, name_value: str | None = '')[source]
- discrete_optimization.workforce.commons.fairness_modeling_ortools.model_fairness(used_team: dict[int, IntVar] | list[IntVar], allocation_variables: list[list[IntVar]] | list[dict[int, IntVar]], value_per_task: list[int], modelisation_dispersion: ModelisationDispersion, cp_model: CpModel, number_teams: int | None = None, name_value: str | None = '')[source]