discrete_optimization.fjsp.solvers package
Submodules
discrete_optimization.fjsp.solvers.cpsat module
- class discrete_optimization.fjsp.solvers.cpsat.CpSatFjspSolver(problem: FJobShopProblem, **kwargs: Any)[source]
Bases:
SchedulingCpSatSolver[tuple[int,int]],MultimodeCpSatSolver[tuple[int,int]],WarmstartMixin- get_task_mode_is_present_variable(task: tuple[int, int], mode: int) LinearExpr | IntVar | int | int8 | uint8 | int32 | uint32 | int64 | uint64[source]
Retrieve the 0-1 variable/expression telling if the mode is used for the task.
- Parameters:
task
mode
Returns:
- get_task_start_or_end_variable(task: tuple[int, int], start_or_end: StartOrEnd) LinearExpr | IntVar | int | int8 | uint8 | int32 | uint32 | int64 | uint64[source]
Retrieve the variable storing the start or end time of given task.
- Parameters:
task
start_or_end
Returns:
- hyperparameters: list[Hyperparameter] = [CategoricalHyperparameter(name='duplicate_temporal_var', default=False, depends_on=None, name_in_kwargs='duplicate_temporal_var'), CategoricalHyperparameter(name='add_cumulative_constraint', default=False, depends_on=None, name_in_kwargs='add_cumulative_constraint')]
Hyperparameters available for this solver.
- These hyperparameters are to be feed to **kwargs found in
__init__()
init_model() (when available)
solve()
- problem: FJobShopProblem
- retrieve_solution(cpsolvercb: CpSolverSolutionCallback) Solution[source]
Construct a do solution from the cpsat solver internal solution.
It will be called each time the cpsat solver find a new solution. At that point, value of internal variables are accessible via cpsolvercb.Value(VARIABLE_NAME).
- Parameters:
cpsolvercb – the ortools callback called when the cpsat solver finds a new solution.
- Returns:
the intermediate solution, at do format.
- set_warm_start(solution: FJobShopSolution) None[source]
Make the solver warm start from the given solution.
discrete_optimization.fjsp.solvers.dp module
- class discrete_optimization.fjsp.solvers.dp.DpFjspSolver(problem: Problem, params_objective_function: ParamsObjectiveFunction | None = None, **kwargs: Any)[source]
Bases:
DpSolver,WarmstartMixin- hyperparameters: list[Hyperparameter] = [CategoricalHyperparameter(name='solver', default=<class 'builtins.CABS'>, depends_on=None, name_in_kwargs='solver'), CategoricalHyperparameter(name='add_penalty_on_inefficiency', default=True, depends_on=None, name_in_kwargs='add_penalty_on_inefficiency')]
Hyperparameters available for this solver.
- These hyperparameters are to be feed to **kwargs found in
__init__()
init_model() (when available)
solve()
- init_model(**kwargs: Any) None[source]
Initialize internal model used to solve.
Can initialize a ortools, milp, gurobi, … model.
- problem: FJobShopProblem
- set_warm_start(solution: FJobShopSolution) None[source]
Make the solver warm start from the given solution.
discrete_optimization.fjsp.solvers.lns_cpsat module
- class discrete_optimization.fjsp.solvers.lns_cpsat.FjspConstraintHandler(problem: FJobShopProblem, fraction_segment_to_fix: float = 0.9)[source]
Bases:
OrtoolsCpSatConstraintHandler- adding_constraint_from_results_store(solver: CpSatFjspSolver, result_storage: ResultStorage, result_storage_last_iteration: ResultStorage, **kwargs: Any) Iterable[Constraint][source]
Add constraints to the internal model of a solver based on previous solutions
- Parameters:
solver – solver whose internal model is updated
result_storage – all results so far
result_storage_last_iteration – results from last LNS iteration only
**kwargs
- Returns:
list of added constraints
- class discrete_optimization.fjsp.solvers.lns_cpsat.NeighFjspConstraintHandler(problem: FJobShopProblem, neighbor_builder: NeighborBuilderSubPart)[source]
Bases:
OrtoolsCpSatConstraintHandler- adding_constraint_from_results_store(solver: CpSatFjspSolver, result_storage: ResultStorage, result_storage_last_iteration: ResultStorage, **kwargs: Any) Iterable[Constraint][source]
Add constraints to the internal model of a solver based on previous solutions
- Parameters:
solver – solver whose internal model is updated
result_storage – all results so far
result_storage_last_iteration – results from last LNS iteration only
**kwargs
- Returns:
list of added constraints
- class discrete_optimization.fjsp.solvers.lns_cpsat.NeighborBuilderSubPart(problem: FJobShopProblem, nb_cut_part: int = 10)[source]
Bases:
objectCut the schedule in different subpart in the increasing order of the schedule.
- find_subtasks(current_solution: FJobShopSolution, subtasks: set[Hashable] | None = None) tuple[set[tuple[int, int]], set[tuple[int, int]]][source]
discrete_optimization.fjsp.solvers.optal module
- class discrete_optimization.fjsp.solvers.optal.OptalFJspSolver(problem: FJobShopProblem, params_objective_function: ParamsObjectiveFunction | None = None, **kwargs: Any)[source]
Bases:
OptalSolver- build_command(parameters_cp: ParametersCp | None = None, time_limit: int = 10, **args: Any)[source]
Build the command line call for optal cp. You can pass parameters from the Parameters class of optal cp for example : searchType=fds, worker0-1.noOverlapPropagationLevel=4 if you want worker 0 and 1 to use this parameters etc. TODO : list such parameters in hyperparameter of this wrapped solver.
- init_model(**args: Any) None[source]
Instantiate a CP model instance
Afterwards, self.instance should not be None anymore.
- problem: FJobShopProblem
- discrete_optimization.fjsp.solvers.optal.deparse_file(problem: FJobShopProblem, original_header_float: float = 0.0) str[source]
Writes an FJobShopProblem object to a string in the .fjs format.
- Parameters:
problem – The FJobShopProblem object to write.
original_header_float – Optional float value from the original file’s header.
- Returns:
A string containing the problem data in .fjs format.